Spaces:
Sleeping
Sleeping
Gangsterbra123
commited on
Upload app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,11 @@ capital_gain = [0, 99999]
|
|
20 |
capital_loss = [0, 4356]
|
21 |
hours_per_week = [20, 60]
|
22 |
|
|
|
|
|
|
|
|
|
|
|
23 |
# Mapping for education
|
24 |
education_mapping = "{'Preschool': 1, '1st-4th': 2, '5th-6th': 3, '7th-8th': 4, '9th': 5, '10th': 6, '11th': 7, '12th': 8, 'HS-grad': 9, 'Some-college': 10, 'Assoc-voc': 11, 'Assoc-acdm': 12, 'Bachelors': 13, 'Masters': 14, 'Prof-school': 15, 'Doctorate': 16}"
|
25 |
education_dict = ast.literal_eval(education_mapping)
|
@@ -44,12 +49,12 @@ columns = ['age', 'education-num', 'sex', 'capital-gain', 'capital-loss',
|
|
44 |
'race_Asian-Pac-Islander', 'race_Black', 'race_Other', 'race_White']
|
45 |
|
46 |
# Code for SVM
|
47 |
-
def
|
48 |
-
with open('models/best_svm_OvM_Salary_Classification.pkl', 'rb') as f:
|
49 |
loaded_model = pickle.load(f)
|
50 |
|
51 |
# Loading the scaler and transform the data
|
52 |
-
with open('models/z-
|
53 |
scaler = pickle.load(f)
|
54 |
|
55 |
new_data = {
|
@@ -105,19 +110,85 @@ def SVM(workclass, education, marital_status, occupation, relationship, race, se
|
|
105 |
|
106 |
return "Predicted Salary Class:", salary_result
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
# Code for LogisticRegression
|
109 |
-
def
|
110 |
# Task 2 logic
|
111 |
return "Task 2 Result"
|
112 |
|
113 |
# Code for
|
114 |
-
def
|
|
|
|
|
|
|
|
|
|
|
115 |
# Task 2 logic
|
116 |
return "Task 2 Result"
|
117 |
|
118 |
# interface one
|
119 |
iface1 = gr.Interface(
|
120 |
-
fn=
|
121 |
inputs=[
|
122 |
gr.Dropdown(choices=workclass_options, label="Workclass"),
|
123 |
gr.Dropdown(choices=education_option, label="Education"),
|
@@ -132,26 +203,59 @@ iface1 = gr.Interface(
|
|
132 |
gr.Slider(minimum=hours_per_week[0], maximum=hours_per_week[1], step=1, label="Hours per Week"),
|
133 |
],
|
134 |
outputs="text",
|
135 |
-
title="SVM"
|
136 |
)
|
137 |
|
138 |
# interface two
|
139 |
iface2 = gr.Interface(
|
140 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
inputs="image",
|
142 |
outputs="text",
|
143 |
title="Logistic Regression"
|
144 |
)
|
145 |
|
146 |
-
# interface
|
147 |
-
|
148 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
inputs="image",
|
150 |
outputs="text",
|
151 |
title="Random Forests"
|
152 |
)
|
153 |
|
154 |
-
demo = gr.TabbedInterface([iface1, iface2, iface3], ["SVM - Jerome Agius", "
|
|
|
|
|
155 |
|
156 |
# Run the interface
|
157 |
demo.launch(share=True)
|
|
|
20 |
capital_loss = [0, 4356]
|
21 |
hours_per_week = [20, 60]
|
22 |
|
23 |
+
children_count = [0, 15]
|
24 |
+
bmi = [10, 100]
|
25 |
+
region_option = ['southwest', 'southeast', 'northwest', 'northeast']
|
26 |
+
smoker_option = ['yes', 'no']
|
27 |
+
|
28 |
# Mapping for education
|
29 |
education_mapping = "{'Preschool': 1, '1st-4th': 2, '5th-6th': 3, '7th-8th': 4, '9th': 5, '10th': 6, '11th': 7, '12th': 8, 'HS-grad': 9, 'Some-college': 10, 'Assoc-voc': 11, 'Assoc-acdm': 12, 'Bachelors': 13, 'Masters': 14, 'Prof-school': 15, 'Doctorate': 16}"
|
30 |
education_dict = ast.literal_eval(education_mapping)
|
|
|
49 |
'race_Asian-Pac-Islander', 'race_Black', 'race_Other', 'race_White']
|
50 |
|
51 |
# Code for SVM
|
52 |
+
def SVM_Salary(workclass, education, marital_status, occupation, relationship, race, sex, age, capital_gain, capital_loss, hours_per_week):
|
53 |
+
with open('../SVM/models/best_svm_OvM_Salary_Classification.pkl', 'rb') as f:
|
54 |
loaded_model = pickle.load(f)
|
55 |
|
56 |
# Loading the scaler and transform the data
|
57 |
+
with open('../SVM/models/z-score_scaler_svm_salary_classification.pkl', 'rb') as f:
|
58 |
scaler = pickle.load(f)
|
59 |
|
60 |
new_data = {
|
|
|
110 |
|
111 |
return "Predicted Salary Class:", salary_result
|
112 |
|
113 |
+
def SVM_Health(age, sex, bmi, children, smoker, region):
|
114 |
+
with open('models/best_health_svm_OvM_Charges_Classification.pkl', 'rb') as f:
|
115 |
+
loaded_model = pickle.load(f)
|
116 |
+
|
117 |
+
# Loading the scaler and transform the data
|
118 |
+
with open('models/z-score_scaler_svm_charges_classification.pkl', 'rb') as f:
|
119 |
+
scaler = pickle.load(f)
|
120 |
+
|
121 |
+
#Inverting the dict to map the 'charges' values back to 'charges' labels
|
122 |
+
inverse_mapping_charges = {
|
123 |
+
0: 'Very Low (<= 5000)',
|
124 |
+
1: 'Low (5001 - 10000)',
|
125 |
+
2: 'Moderate (10001 - 15000)',
|
126 |
+
3: 'High (15001 - 20000)',
|
127 |
+
4: 'Very High (> 20001)',
|
128 |
+
}
|
129 |
+
|
130 |
+
new_data = {
|
131 |
+
'age': age,
|
132 |
+
'sex': sex,
|
133 |
+
'bmi': bmi,
|
134 |
+
'children': children,
|
135 |
+
'smoker': smoker,
|
136 |
+
'region': region,
|
137 |
+
}
|
138 |
+
|
139 |
+
new_data = pd.DataFrame([new_data])
|
140 |
+
|
141 |
+
# Create an empty DataFrame with these columns
|
142 |
+
formattedDF = pd.DataFrame(columns=columns)
|
143 |
+
|
144 |
+
# Copying over the continuous columns
|
145 |
+
formattedDF['age'] = new_data['age']
|
146 |
+
formattedDF['sex'] = new_data['sex'].apply(lambda x: 1 if x == 'Male' else 0)
|
147 |
+
formattedDF['bmi'] = new_data['bmi']
|
148 |
+
formattedDF['children'] = new_data['children']
|
149 |
+
formattedDF['smoker'] = new_data['smoker'].apply(lambda x: 1 if x == 'Yes' else 0)
|
150 |
+
formattedDF['marital-status_'+new_data['marital-status']] = 1
|
151 |
+
formattedDF['region_'+new_data['region']] = 1
|
152 |
+
|
153 |
+
|
154 |
+
# Fill remaining columns with 0
|
155 |
+
formattedDF.fillna(0, inplace=True)
|
156 |
+
formattedDF = formattedDF.astype(int)
|
157 |
+
formattedDF = formattedDF[formattedDF.columns.intersection(columns)]
|
158 |
+
|
159 |
+
# Apply the scaler to the unseen data
|
160 |
+
continuous_columns = ['age', 'bmi']
|
161 |
+
formattedDF[continuous_columns] = scaler.transform(formattedDF[continuous_columns])
|
162 |
+
|
163 |
+
# Make predictions with the loaded model
|
164 |
+
prediction = loaded_model.predict(formattedDF)[0]
|
165 |
+
prediction = inverse_mapping_charges[prediction]
|
166 |
+
|
167 |
+
return "Predicted Charges Class:", prediction
|
168 |
+
|
169 |
+
# Code for LogisticRegression
|
170 |
+
def LogisticRegression_Salary(input_image):
|
171 |
+
# Task 2 logic
|
172 |
+
return "Task 2 Result"
|
173 |
+
|
174 |
# Code for LogisticRegression
|
175 |
+
def LogisticRegression_Health(input_image):
|
176 |
# Task 2 logic
|
177 |
return "Task 2 Result"
|
178 |
|
179 |
# Code for
|
180 |
+
def RandomForests_Salary(input_image):
|
181 |
+
# Task 2 logic
|
182 |
+
return "Task 2 Result"
|
183 |
+
|
184 |
+
# Code for
|
185 |
+
def RandomForests_Health(input_image):
|
186 |
# Task 2 logic
|
187 |
return "Task 2 Result"
|
188 |
|
189 |
# interface one
|
190 |
iface1 = gr.Interface(
|
191 |
+
fn=SVM_Salary,
|
192 |
inputs=[
|
193 |
gr.Dropdown(choices=workclass_options, label="Workclass"),
|
194 |
gr.Dropdown(choices=education_option, label="Education"),
|
|
|
203 |
gr.Slider(minimum=hours_per_week[0], maximum=hours_per_week[1], step=1, label="Hours per Week"),
|
204 |
],
|
205 |
outputs="text",
|
206 |
+
title="SVM - Salary"
|
207 |
)
|
208 |
|
209 |
# interface two
|
210 |
iface2 = gr.Interface(
|
211 |
+
fn=SVM_Health,
|
212 |
+
inputs=[
|
213 |
+
gr.Slider(minimum=age[0], maximum=age[1], step=1, label="Age"),
|
214 |
+
gr.Dropdown(choices=sex_option, label="Sex"),
|
215 |
+
gr.Slider(minimum=bmi[0], maximum=bmi[1], step=0.1, label="BMI"),
|
216 |
+
gr.Slider(minimum=children_count[0], maximum=children_count[1], step=1, label="Children"),
|
217 |
+
gr.Dropdown(choices=smoker_option, label="Smoker"),
|
218 |
+
gr.Dropdown(choices=region_option, label="Region"),
|
219 |
+
],
|
220 |
+
outputs="text",
|
221 |
+
title="SVM - Health"
|
222 |
+
)
|
223 |
+
|
224 |
+
# interface three
|
225 |
+
iface3 = gr.Interface(
|
226 |
+
fn=LogisticRegression_Salary,
|
227 |
inputs="image",
|
228 |
outputs="text",
|
229 |
title="Logistic Regression"
|
230 |
)
|
231 |
|
232 |
+
# interface four
|
233 |
+
iface4 = gr.Interface(
|
234 |
+
fn=LogisticRegression_Health,
|
235 |
+
inputs="image",
|
236 |
+
outputs="text",
|
237 |
+
title="Logistic Regression"
|
238 |
+
)
|
239 |
+
|
240 |
+
# interface five
|
241 |
+
iface5 = gr.Interface(
|
242 |
+
fn=RandomForests_Salary,
|
243 |
+
inputs="image",
|
244 |
+
outputs="text",
|
245 |
+
title="Random Forests"
|
246 |
+
)
|
247 |
+
|
248 |
+
# interface six
|
249 |
+
iface6 = gr.Interface(
|
250 |
+
fn=RandomForests_Health,
|
251 |
inputs="image",
|
252 |
outputs="text",
|
253 |
title="Random Forests"
|
254 |
)
|
255 |
|
256 |
+
demo = gr.TabbedInterface([iface1, iface2, iface3, iface4, iface5, iface6], ["SVM - Jerome Agius", "SVM - Jerome Agius",
|
257 |
+
"Logistic Regression - Isaac Muscat", "Logistic Regression - Isaac Muscat",
|
258 |
+
"Random Forests - Kyle Demicoli", "Random Forests - Kyle Demicoli"])
|
259 |
|
260 |
# Run the interface
|
261 |
demo.launch(share=True)
|