Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,167 Bytes
9bd9e22 3f4ffb7 fad2247 c32bf6e 2cc8ae2 0e01434 2cc8ae2 51456ff 2cc8ae2 42b1ea0 fad2247 51456ff fad2247 2cc8ae2 fad2247 db1ad09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import Chroma, Qdrant
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams
from dotenv import load_dotenv
import os
provider_retrieval_model = "HF"
embeddingmodel = "sentence-transformers/all-MiniLM-l6-v2"
load_dotenv()
HF_Token = os.environ.get("HF_TOKEN")
client_path = "./vectorstore/"
collection_name = "collection"
provider_retrieval_model = "HF"
def create_vectorstore(docs):
if provider_retrieval_model == "HF":
qdrantClient = QdrantClient(path=client_path, prefer_grpc=True)
embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key=HF_Token, model_name=embeddingmodel
)
dim = 384
qdrantClient.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=dim, distance=Distance.COSINE),
)
vectorstore = Qdrant(
client=qdrantClient,
collection_name=collection_name,
embeddings=embeddings,
)
vectorstore.add_documents(docs) |