Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update auditqa/engine/vectorstore.py
Browse files
auditqa/engine/vectorstore.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings
|
|
|
|
|
2 |
from dotenv import load_dotenv
|
3 |
import os
|
4 |
|
@@ -6,6 +8,32 @@ provider_retrieval_model = "HF"
|
|
6 |
embeddingmodel = "BAAI/bge-small-en-v1.5"
|
7 |
load_dotenv()
|
8 |
HF_Token = os.environ.get("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings
|
2 |
+
from langchain.vectorstores import Chroma, Qdrant
|
3 |
+
from qdrant_client import QdrantClient
|
4 |
from dotenv import load_dotenv
|
5 |
import os
|
6 |
|
|
|
8 |
embeddingmodel = "BAAI/bge-small-en-v1.5"
|
9 |
load_dotenv()
|
10 |
HF_Token = os.environ.get("HF_TOKEN")
|
11 |
+
client_path = f"./vectorstore"
|
12 |
+
collection_name = f"collection"
|
13 |
+
provider_retrieval_model = "HF"
|
14 |
+
|
15 |
+
def create_vectorstore(docs):
|
16 |
+
|
17 |
+
if provider_retrieval_model == "HF":
|
18 |
+
qdrantClient = QdrantClient(path=client_path, prefer_grpc=True)
|
19 |
+
|
20 |
+
embeddings = HuggingFaceInferenceAPIEmbeddings(
|
21 |
+
api_key=HF_Token, model_name=embeddingmodel
|
22 |
+
)
|
23 |
+
|
24 |
+
dim = 1024
|
25 |
+
|
26 |
|
27 |
+
|
28 |
+
qdrantClient.create_collection(
|
29 |
+
collection_name=collection_name,
|
30 |
+
vectors_config=VectorParams(size=dim, distance=Distance.COSINE),
|
31 |
+
)
|
32 |
+
|
33 |
+
vectorstore = Qdrant(
|
34 |
+
client=qdrantClient,
|
35 |
+
collection_name=collection_name,
|
36 |
+
embeddings=embeddings,
|
37 |
+
)
|
38 |
+
|
39 |
+
vectorstore.add_documents(docs_samp)
|