File size: 18,533 Bytes
5ab87e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
# eval_benchmark_multithreaded.py
"""Unified benchmarking script for ReCall, ZeroSearch, and R1‑Searcher
with optional multi‑threaded execution.
Example usage (single‑threaded)
-------------------------------
```bash
python eval_benchmark.py \
--dataset frames \
--agent r1-searcher \
--model-url http://0.0.0.0:1233 \
--out-base /tmp/evals \
--mode single
```
Example usage (multi‑threaded, 128 workers)
------------------------------------------
```bash
python eval_benchmark.py \
--dataset frames \
--agent recall \
--model-url http://0.0.0.0:1231 \
--out-base /tmp/evals \
--mode multi \
--workers 128
```
The script will:
1. Load the specified dataset JSONL file that contains objects with keys
`question` and `answer`.
2. Build the chosen agent wrapper (`recall`, `zerosearch`, or `r1-searcher`).
3. Stream one JSONL line per example with *all* details needed for analysis.
4. Optionally run the evaluation loop in parallel using a configurable number
of worker threads.
5. Automatically construct the output path as:
```
{out_base}/{model_name}/{dataset}.jsonl
```
where `model_name` is derived from the `--model-url` (characters after the
last `/`).
"""
from __future__ import annotations
import argparse
import json
import logging
import os
import pathlib
import re
import threading
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Dict, List
import unicodedata
from openai import OpenAI, APIStatusError
from tqdm import tqdm
# --------------------------------------------------------------------
# Agent imports (ensure PYTHONPATH is set appropriately)
# --------------------------------------------------------------------
from re_call import ReCall # user's wrapper
# from re_call import ZeroSearchInference, ZeroSearchConfig
# from re_call import R1Searcher, R1SearchConfig as R1Cfg
# from re_call import O1Cfg, O1Searcher
from pathlib import Path
# from re_call import SDSCfg, SDSSearcher
# --------------------------------------------------------------------
# Environment Keys – override with real keys or environment variables
# --------------------------------------------------------------------
#for recall
# search_env = "from search_api import web_search, web_visit"
# search_schemas =[
# {
# "name": "web_search",
# "description": "Google search and return links to web-pages with a brief snippet given a text query",
# "parameters": {
# "type": "object",
# "properties": {
# "query": {"type": "string"},
# },
# "required": ["query"],
# },
# },
# {
# "name": "web_visit",
# "description": "Visit webpage and return its content",
# "parameters": {
# "type": "object",
# "properties": {
# "url": {"type": "string", "description": "The URL of the webpage to visit. Must be a single URL"},
# },
# "required": ["url"],
# },
# }
# ]
# for recall
search_env = "from search_api import search_urls, open_url, search_and_parse_query, query_url"
search_schemas =[
{
"name": "search_urls",
"description": "Google search and return links to web-pages with a brief snippet given a text query",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string"},
"top_k": {"type": "integer", "default": 10},
},
"required": ["query"],
},
},
{
"name": "query_url",
"description": "Visit webpage and return evidence based retrival for the provided goal",
"parameters": {
"type": "object",
"properties": {
"url": {"type": "string", "description": "The URL of the webpage to visit. Must be a single URL"},
"goal": {"type": "string", "description": "The specific information goal for visiting webpage"},
},
"required": ["url", "goal"],
},
}
]
EXECUTOR_URL = os.environ["HOST_SERPER_URL"]
DATA_ROOT = pathlib.Path("./eval_datasets")
SEM = threading.Semaphore(3) # limit concurrent judge calls
JUDGE_MODEL = "gpt-4.1-mini"
try:
base = Path(__file__).resolve().parent
except NameError: # e.g., REPL/Jupyter
base = Path.cwd()
TOKENIZER_DIR = (base / "tokenizer-info").resolve()
# ───────────────────────── tokenizer ────────────────────────────────────────
try:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_DIR, trust_remote_code=True)
except Exception as e:
import sys
sys.exit(f"❌ Could not load Qwen3 tokenizer: {e}")
import hashlib
def get_uid(sample: dict) -> str:
"""Generate a UID using SHA256 hash of question."""
return hashlib.sha256(sample["question"].strip().encode("utf-8")).hexdigest()
# --------------------------------------------------------------------
# Regex & utilities
# --------------------------------------------------------------------
def extract_answer_tagged(text: str) -> str:
ANS_RE = re.compile(r"<answer>(.*?)</answer>", re.S)
match = ANS_RE.findall(text)
if match :
return match[-1].strip().lower()
else:
print("No answer tags found")
return text[-200:] #because o1-searcher fails to follow format
def extract_answer_boxed(response):
def remove_boxed(s):
if "\\boxed " in s:
left = "\\boxed "
assert s[:len(left)] == left
return s[len(left):]
left = "\\boxed{"
assert s[:len(left)] == left
assert s[-1] == "}"
return s[len(left):-1]
def last_boxed_only_string(string):
idx = string.rfind("\\boxed")
if "\\boxed " in string:
return "\\boxed " + string.split("\\boxed ")[-1].split("$")[0]
if idx < 0:
idx = string.rfind("\\fbox")
if idx < 0:
return None
i = idx
right_brace_idx = None
num_left_braces_open = 0
while i < len(string):
if string[i] == "{":
num_left_braces_open += 1
if string[i] == "}":
num_left_braces_open -= 1
if num_left_braces_open == 0:
right_brace_idx = i
break
i += 1
if right_brace_idx is None:
retval = None
else:
retval = string[idx:right_brace_idx + 1]
return retval
answer = remove_boxed(last_boxed_only_string(response))
return answer
JUDGE_SYS = """
You are an impartial judge evaluating the correctness of a model's answer against a ground-truth answer for a given question. Your task is to:
1. Compare the model's answer to the ground-truth answer.
2. Determine if the model's answer is correct or incorrect.
**Input Format:**
- Question: {question}
- Ground Truth: {ground_truth}
- Model Answer: {model_answer}
**Output Format:**
correct/incorrect/unknown
**Guidelines:**
- The model's answer is correct if it matches the ground-truth answer in meaning and content it is case-insensitive, ignore minor punctuation or formatting differences.
- If the model's answer contains additional information, it is still correct as long as the core answer matches the ground truth.
- Be precise output a single word correct / incorrect / unknown and **nothing else**
- For MCQ questions match the option ID A. B. C. or D. if its correct the answer is correct.
"""
# - If the model's answer is partially correct or contains errors, it is incorrect.
# Thread‑local OpenAI client cache
def _oa() -> OpenAI:
th = threading.current_thread()
if not hasattr(th, "_oa"):
th._oa = OpenAI()
return th._oa
def judge(q: str, gt: str, pred: str) -> str:
if pred == "":
return "unknown"
prompt = JUDGE_SYS.format(question=q, ground_truth=gt, model_answer=pred)
try:
with SEM:
resp = _oa().chat.completions.create(
model=JUDGE_MODEL,
messages=[
{"role": "system", "content": JUDGE_SYS},
{"role": "user", "content": prompt},
],
temperature=0.0,
max_tokens=100,
)
return resp.choices[0].message.content.strip().lower()
except APIStatusError:
return "unknown"
# --------------------------------------------------------------------
# Agent factory
# --------------------------------------------------------------------
def build_agent(kind: str, model_url: str):
kind = kind.lower()
print(kind)
if kind == "recall":
return ReCall(executor_url=EXECUTOR_URL)
else:
raise ValueError(f"Unknown agent kind: {kind}")
# if kind == "o1-search" or kind == "sds":
# cfg = O1Cfg()
# return O1Searcher(cfg, thinker_url=model_url)
# if kind == "zerosearch":
# cfg = ZeroSearchConfig(thinker_url=model_url)
# return ZeroSearchInference(cfg)
# if kind in ("r1-search", "r1-searcher", "r1"):
# cfg = R1Cfg(serper_api_key=os.getenv("SERPER_API_KEY", ""))
# return R1Searcher(cfg=cfg, model_url=model_url)
# raise ValueError(f"Unknown agent kind: {kind}")
# --------------------------------------------------------------------
# Core evaluation routine for a single example (thread‑safe)
# --------------------------------------------------------------------
def evaluate_example(example: Dict[str, str], agent_kind: str, model_url: str) -> Dict[str, str]:
"""Run one example through the pipeline and return result row."""
question = example["question"].strip()
answer_gt = example["answer"].strip()
idx = example["id"].strip()
# Build a *fresh* agent per thread to avoid shared‑state issues
agent = build_agent(agent_kind, model_url=model_url)
if agent_kind == "recall" and model_url == "deepseek-ai/DeepSeek-R1":
# print(agent_kind)
# print("B"*100)
transcript, tool_calls = agent.run_deepseek(
env=search_env,
func_schemas=search_schemas,
question=question,
model_name="deepseek-ai/DeepSeek-R1",
temperature=0.6,
max_tokens=40960,
# tokenizer = tokenizer
)
elif agent_kind == "recall":
transcript, tool_calls, chat = agent.run(
env=search_env,
func_schemas=search_schemas,
question=question,
model_url=model_url,
temperature=0.6,
max_new_tokens=40960,
tokenizer = tokenizer
)
# tool_calls = agent.extract_tool_calls(transcript)
else: # zerosearch or r1‑searcher
transcript, tool_calls = agent.run(question)
if agent_kind in [
"r1-searcher",
"zerosearch",
# "o1-search",
]:
pred = extract_answer_tagged(transcript)
if agent_kind in [
"recall",
"SDS"
"o1-searcher"
]:
try:
pred = extract_answer_boxed(transcript)
except:
print("falling to last string")
pred = transcript[-200:]
else:
try:
pred = extract_answer_boxed(transcript)
except:
print("falling to last string")
pred = transcript[-200:]
verdict = judge(question, answer_gt.lower(), pred.lower())
return {
"id": idx,
"question": question,
"answer_gt": answer_gt,
"model_answer": pred,
"judge": verdict,
"tool_calls": tool_calls,
"transcript": transcript,
"chat": chat
}
# --------------------------------------------------------------------
# CLI entry‑point
# --------------------------------------------------------------------
def build_output_path(out_base, agent, dataset, name) -> pathlib.Path:
"""Construct output path as {out_base}/{model_name}/{dataset}.jsonl."""
return out_base / f"{agent}" / f"{dataset}-{name}.jsonl"
def normalize(s: str) -> str:
return unicodedata.normalize("NFKD", s.strip().lower())
def load_existing_results(path: pathlib.Path) -> tuple[list[dict], set[str]]:
results = []
uids = set()
if not path.exists():
return results, uids
with open(path, "r", encoding="utf-8") as f:
for line in f:
try:
row = json.loads(line)
if row['model_answer'] != "":
results.append(row)
uids.add(row["id"])
except Exception:
continue
return results, uids
def main():
parser = argparse.ArgumentParser(description="Benchmark QA agents on a dataset (single or multi‑threaded)")
parser.add_argument("--dataset", required=True, help="dataset name (frames, …)")
parser.add_argument("--agent", required=True, choices=["recall", "zerosearch", "r1-searcher", "o1-search", "SDS", "deepseek-r1"], help="agent wrapper")
parser.add_argument("--out", required=True, help="base directory for outputs")
parser.add_argument("--model-url", required=False, help="URL of the model server")
parser.add_argument("--limit", type=int, default=0, help="optional cap on number of questions")
parser.add_argument("--mode", choices=["single", "multi"], default="single", help="execution mode")
parser.add_argument("--workers", type=int, default=8, help="number of worker threads for multi‑mode")
parser.add_argument("--name", type=str, default="", help="suffix for save dir")
args = parser.parse_args()
# ----------------------------------------------------------------
# Dataset loading
# ----------------------------------------------------------------
ds_path = DATA_ROOT / f"{args.dataset}.jsonl"
if not ds_path.exists():
raise FileNotFoundError(ds_path)
with ds_path.open() as f:
data = [json.loads(line) for line in f]
# ----------------------------------------------------------------
# Output path setup
# ----------------------------------------------------------------
out_base = pathlib.Path(args.out).expanduser().resolve()
out_path = build_output_path(out_base, args.agent, args.dataset, args.name)
print(out_path)
out_path.parent.mkdir(parents=True, exist_ok=True)
if args.limit:
data = data[: args.limit]
# data = data[246:]
correct = 0
start_time = time.perf_counter()
# ----------------------------------------------------------------
# SINGLE‑THREADED EXECUTION
# ----------------------------------------------------------------
if args.mode == "single":
with open(out_path, "w", encoding="utf-8") as fout:
for ex in tqdm(data, desc="QA loop (single)"):
row = evaluate_example(ex, args.agent, args.model_url)
if row["judge"] == "correct":
correct += 1
# context for row
row.update({"agent": args.agent, "dataset": args.dataset})
fout.write(json.dumps(row, ensure_ascii=False) + "\n")
fout.flush()
# ----------------------------------------------------------------
# MULTI‑THREADED EXECUTION
# ----------------------------------------------------------------
else:
workers = max(1, args.workers)
logging.info("Running in multi‑threaded mode with %d workers", workers)
with ThreadPoolExecutor(max_workers=workers) as executor, open(out_path, "a", encoding="utf-8") as fout:
futures = {executor.submit(evaluate_example, ex, args.agent, args.model_url): ex for ex in data}
for fut in tqdm(as_completed(futures), total=len(futures), desc="QA loop (multi)"):
try:
row = fut.result()
except Exception as exc:
logging.exception("Evaluation failed: %s", exc)
continue
# print(row['id'])
if row["judge"] == "correct":
correct += 1
row.update({"agent": args.agent, "dataset": args.dataset})
fout.write(json.dumps(row, ensure_ascii=False) + "\n")
fout.flush()
elapsed = time.perf_counter() - start_time
accuracy = correct / len(data) if data else 0.0
print(f"Accuracy: {correct}/{len(data)} = {accuracy:.1%}")
print(f"Elapsed time: {elapsed:.2f}s ({elapsed/len(data):.2f}s per example)")
if __name__ == "__main__":
main() |