File size: 13,489 Bytes
1ea0f2c
85612d7
 
 
 
1ea0f2c
85612d7
 
 
1675686
1ea0f2c
c78cb61
 
 
a97e685
 
 
c78cb61
85612d7
c78cb61
 
 
 
 
 
 
1ea0f2c
85612d7
 
 
1ea0f2c
85612d7
 
 
1ea0f2c
85612d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6326d5f
85612d7
1ea0f2c
85612d7
 
6326d5f
1675686
 
 
85612d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64cdd29
85612d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64cdd29
220350a
85612d7
 
 
 
 
220350a
85612d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6326d5f
85612d7
 
6326d5f
85612d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6326d5f
 
1ea0f2c
1675686
 
 
1ea0f2c
1675686
 
 
 
 
1ea0f2c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from flask import Flask, request, jsonify
import cv2
import numpy as np
import tensorflow as tf
from transformers import BlipProcessor, BlipForConditionalGeneration, CLIPProcessor, CLIPModel
import torch
import os
import requests
from tempfile import NamedTemporaryFile
import gc


import tensorflow_hub as hub

# Ensure that Hugging Face uses the appropriate cache directory
os.environ['TRANSFORMERS_CACHE'] = '/app/cache'
os.environ['HF_HOME'] = '/app/cache'

movenet_model_path = '/models/movenet/movenet_lightning'

# Check if the model path exists
if not os.path.exists(movenet_model_path):
    # Download the model from TensorFlow Hub
    movenet_model = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4")
else:
    movenet_model = tf.saved_model.load(movenet_model_path)

# Load BLIP model
blip_model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-large')
blip_processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-large')

# Load CLIP model
clip_model = CLIPModel.from_pretrained('openai/clip-vit-large-patch14')
clip_processor = CLIPProcessor.from_pretrained('openai/clip-vit-large-patch14')

# Keypoint dictionary for reference
KEYPOINT_DICT = {
    'nose': 0,
    'left_eye': 1,
    'right_eye': 2,
    'left_ear': 3,
    'right_ear': 4,
    'left_shoulder': 5,
    'right_shoulder': 6,
    'left_elbow': 7,
    'right_elbow': 8,
    'left_wrist': 9,
    'right_wrist': 10,
    'left_hip': 11,
    'right_hip': 12,
    'left_knee': 13,
    'right_knee': 14,
    'left_ankle': 15,
    'right_ankle': 16
}

app = Flask(__name__)

@app.route('/process_video', methods=['POST'])
def process_video():
    try:
        # Clear previous cache
        gc.collect()
        torch.cuda.empty_cache()
        # Get the video URL from the request
        video_url = request.json.get('videoURL')
        height =  request.json.get('height')
        weight = request.json.get('weight')
        wingspan = request.json.get('wingspan')

      
        if not video_url:
            return jsonify({"error": "No video URL provided"}), 400


        if not all([height, weight, wingspan]):
            return jsonify({"error": "Height, weight, and wingspan are required"}), 400


        # Download the video from the S3 URL
        with NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
            response = requests.get(video_url)
            if response.status_code != 200:
                return jsonify({"error": "Failed to download video from the provided URL"}), 400
            temp_video_file.write(response.content)
            video_path = temp_video_file.name

        # Open the video file
        cap = cv2.VideoCapture(video_path)
        frames = []

        # Extract 60 frames from the video
        success, frame = cap.read()
        frame_count = 0
        while success and frame_count < 20:
            frames.append(frame)
            success, frame = cap.read()
            frame_count += 1

        cap.release()
        os.remove(video_path)

        # Process each frame with MoveNet (to get 3D keypoints and detect stance)
        movenet_results = []
        stances = []
        hip_rotations = []
        arm_extensions = []
        stepping_jabs = []
        guard_up = []
        hand_returned = []
        hips_width_apart = []
        leg_angle_correct = []
        punch_started = False
        initial_left_wrist = None
        initial_right_wrist = None

        for frame_index, frame in enumerate(frames):
            input_tensor = tf.image.resize_with_pad(tf.convert_to_tensor(frame, dtype=tf.uint8), 128, 128)
            input_tensor = tf.cast(input_tensor, dtype=tf.int32)  # Cast to int32 instead of float32
            input_tensor = tf.expand_dims(input_tensor, axis=0)
            keypoints = movenet_model.signatures['serving_default'](input_tensor)
            keypoints_3d = keypoints['output_0'][0].numpy().tolist()  # Assuming the model returns 3D keypoints
            movenet_results.append(keypoints_3d)


            # Detect stance based on keypoints (using ankles and wrists)
            left_ankle = keypoints_3d[KEYPOINT_DICT['left_ankle']]
            right_ankle = keypoints_3d[KEYPOINT_DICT['right_ankle']]
            left_wrist = keypoints_3d[KEYPOINT_DICT['left_wrist']]
            right_wrist = keypoints_3d[KEYPOINT_DICT['right_wrist']]

            if right_ankle[0] < left_ankle[0] and right_wrist[0] < left_wrist[0]:
                stance = "orthodox"
            elif left_ankle[0] < right_ankle[0] and left_wrist[0] < right_wrist[0]:
                stance = "southpaw"
            else:
                stance = "unknown"
            stances.append(stance)

            # Detect if guard is up (both hands near eye level at the side of the head)
            nose = keypoints_3d[KEYPOINT_DICT['nose']]
            guard_threshold = 0.1  # Threshold distance to consider hands near the head
            left_hand_near_head = abs(left_wrist[1] - nose[1]) < guard_threshold
            right_hand_near_head = abs(right_wrist[1] - nose[1]) < guard_threshold
            guard_up.append(left_hand_near_head and right_hand_near_head)

            # Determine if the punch has started (based on wrist movement)
            if frame_index > 0:
                previous_left_wrist = movenet_results[frame_index - 1][KEYPOINT_DICT['left_wrist']]
                previous_right_wrist = movenet_results[frame_index - 1][KEYPOINT_DICT['right_wrist']]

                if stance == "orthodox" and (left_wrist[0] - previous_left_wrist[0]) > 0.05:
                    punch_started = True
                    if initial_left_wrist is None:
                        initial_left_wrist = left_wrist
                elif stance == "southpaw" and (right_wrist[0] - previous_right_wrist[0]) > 0.05:
                    punch_started = True
                    if initial_right_wrist is None:
                        initial_right_wrist = right_wrist

            # Detect hip rotation (based on left and right hips, considering stance and punch start)
            left_hip = keypoints_3d[KEYPOINT_DICT['left_hip']]
            right_hip = keypoints_3d[KEYPOINT_DICT['right_hip']]
            if punch_started:
                if stance == "orthodox":
                    hip_rotation = right_hip[0] - left_hip[0]  # Right hip should move forward
                elif stance == "southpaw":
                    hip_rotation = left_hip[0] - right_hip[0]  # Left hip should move forward
                else:
                    hip_rotation = 0
            else:
                hip_rotation = 0
            hip_rotations.append(hip_rotation)

            # Detect full arm extension (based on shoulder, elbow, and wrist, considering stance)
            left_shoulder = keypoints_3d[KEYPOINT_DICT['left_shoulder']]
            left_elbow = keypoints_3d[KEYPOINT_DICT['left_elbow']]
            right_shoulder = keypoints_3d[KEYPOINT_DICT['right_shoulder']]
            right_elbow = keypoints_3d[KEYPOINT_DICT['right_elbow']]

            if stance == "orthodox":
                lead_arm_extension = np.linalg.norm(np.array(left_wrist) - np.array(left_shoulder))
            elif stance == "southpaw":
                lead_arm_extension = np.linalg.norm(np.array(right_wrist) - np.array(right_shoulder))
            else:
                lead_arm_extension = 0
            arm_extensions.append(lead_arm_extension)

            # Detect stepping with the jab and coming back (based on ankles, considering stance and punch start)
            if punch_started and frame_index > 0:
                previous_left_ankle = movenet_results[frame_index - 1][KEYPOINT_DICT['left_ankle']]
                previous_right_ankle = movenet_results[frame_index - 1][KEYPOINT_DICT['right_ankle']]

                if stance == "orthodox":
                    step_movement = (left_ankle[0] - previous_left_ankle[0]) > 0.05  # Lead foot is left
                elif stance == "southpaw":
                    step_movement = (right_ankle[0] - previous_right_ankle[0]) > 0.05  # Lead foot is right
                else:
                    step_movement = False
                stepping_jabs.append(step_movement)
            else:
                stepping_jabs.append(False)

            # Detect if the hand returns to the initial position after the punch
            if punch_started:
                if stance == "orthodox" and initial_left_wrist is not None:
                    hand_returned.append(np.linalg.norm(np.array(left_wrist) - np.array(initial_left_wrist)) < 0.05)
                elif stance == "southpaw" and initial_right_wrist is not None:
                    hand_returned.append(np.linalg.norm(np.array(right_wrist) - np.array(initial_right_wrist)) < 0.05)
                else:
                    hand_returned.append(False)
            else:
                hand_returned.append(False)

            # Detect if hips are shoulder width apart
            left_shoulder = keypoints_3d[KEYPOINT_DICT['left_shoulder']]
            right_shoulder = keypoints_3d[KEYPOINT_DICT['right_shoulder']]
            shoulder_width = abs(left_shoulder[0] - right_shoulder[0])
            hips_width = abs(left_hip[0] - right_hip[0])
            hips_width_apart.append(hips_width > 0.9 * shoulder_width and hips_width < 1.1 * shoulder_width)

            # Detect if the back leg is at a 45 degree angle outward (for orthodox and southpaw)
            if stance == "orthodox":
                right_leg_angle = np.arctan2(right_ankle[1] - right_hip[1], right_ankle[0] - right_hip[0]) * 180 / np.pi
                leg_angle_correct.append(40 <= right_leg_angle <= 50)
            elif stance == "southpaw":
                left_leg_angle = np.arctan2(left_ankle[1] - left_hip[1], left_ankle[0] - left_hip[0]) * 180 / np.pi
                leg_angle_correct.append(40 <= left_leg_angle <= 50)
            else:
                leg_angle_correct.append(False)

        # Generate captions for all 60 frames using BLIP
        captions = []
        for frame in frames:
            inputs = blip_processor(images=frame, return_tensors="pt")
            with torch.no_grad():
                caption = blip_model.generate(**inputs)
            captions.append(blip_processor.decode(caption[0], skip_special_tokens=True))

        # Use CLIP to assess the similarity of frames to a Muay Thai jab prompt, including stance
        clip_results = []
        for i, frame in enumerate(frames):
            stance = stances[i]
            prompt = f"A person performing a Muay Thai jab in {stance} stance at {height} in in height, {weight} lbs in weight, and a wingspan of {wingspan} cm, with  hip rotation of {hip_rotations[i]:.2f}, arm extension of {arm_extensions[i]:.2f}, {'stepping forward' if stepping_jabs[i] else 'not stepping'}, {'guard up' if guard_up[i] else 'guard down'}, {'hand returned to initial position' if hand_returned[i] else 'hand not returned'}, {'hips shoulder width apart' if hips_width_apart[i] else 'hips not shoulder width apart'}, and {'correct leg angle' if leg_angle_correct[i] else 'incorrect leg angle'}"
            text_inputs = clip_processor(text=[prompt], return_tensors="pt")
            image_inputs = clip_processor(images=frame, return_tensors="pt")
            with torch.no_grad():
                image_features = clip_model.get_image_features(**image_inputs)
                text_features = clip_model.get_text_features(**text_inputs)
                similarity = torch.nn.functional.cosine_similarity(image_features, text_features)
            clip_results.append(similarity.item())

        # Calculate score based on CLIP results and BLIP captions
        avg_clip_similarity = sum(clip_results) / len(clip_results) if clip_results else 0
        guard_score = sum(guard_up) / len(guard_up) if guard_up else 0
        hand_return_score = sum(hand_returned) / len(hand_returned) if hand_returned else 0
        hips_width_score = sum(hips_width_apart) / len(hips_width_apart) if hips_width_apart else 0
        leg_angle_score = sum(leg_angle_correct) / len(leg_angle_correct) if leg_angle_correct else 0
        overall_score = (avg_clip_similarity + guard_score + hand_return_score + hips_width_score + leg_angle_score) / 5

        # Scale the overall score to a range of 0 - 10
        overall_score = max(0, min(overall_score * 10, 10))

        # Return combined results
        response = {
            "movenet_results": movenet_results,
            "blip_captions": captions,
            "clip_similarities": clip_results,
            "stances": stances,
            "hip_rotations": hip_rotations,
            "arm_extensions": arm_extensions,
            "stepping_jabs": stepping_jabs,
            "hips_width_apart": hips_width_apart,
            "leg_angle_correct": leg_angle_correct,
            "overall_score": overall_score,
            "guard_score": guard_score,
            "hand_return_score": hand_return_score,
            "hips_width_score":hips_width_score,
            "leg_angle_score": leg_angle_score,
        }
        return jsonify(response)
    except Exception as e:
        return jsonify({"error": str(e)}), 500

# if __name__ == '__main__':
#     app.run(host='0.0.0.0', port=7860)

if __name__ == '__main__':
    # Clear any cache before starting the Flask server
    gc.collect()
    torch.cuda.empty_cache()
    
    # Start the Flask app
    app.run(host='0.0.0.0', port=7860)