Spaces:
Sleeping
Sleeping
File size: 13,489 Bytes
1ea0f2c 85612d7 1ea0f2c 85612d7 1675686 1ea0f2c c78cb61 a97e685 c78cb61 85612d7 c78cb61 1ea0f2c 85612d7 1ea0f2c 85612d7 1ea0f2c 85612d7 6326d5f 85612d7 1ea0f2c 85612d7 6326d5f 1675686 85612d7 64cdd29 85612d7 64cdd29 220350a 85612d7 220350a 85612d7 6326d5f 85612d7 6326d5f 85612d7 6326d5f 1ea0f2c 1675686 1ea0f2c 1675686 1ea0f2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
from flask import Flask, request, jsonify
import cv2
import numpy as np
import tensorflow as tf
from transformers import BlipProcessor, BlipForConditionalGeneration, CLIPProcessor, CLIPModel
import torch
import os
import requests
from tempfile import NamedTemporaryFile
import gc
import tensorflow_hub as hub
# Ensure that Hugging Face uses the appropriate cache directory
os.environ['TRANSFORMERS_CACHE'] = '/app/cache'
os.environ['HF_HOME'] = '/app/cache'
movenet_model_path = '/models/movenet/movenet_lightning'
# Check if the model path exists
if not os.path.exists(movenet_model_path):
# Download the model from TensorFlow Hub
movenet_model = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4")
else:
movenet_model = tf.saved_model.load(movenet_model_path)
# Load BLIP model
blip_model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-large')
blip_processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-large')
# Load CLIP model
clip_model = CLIPModel.from_pretrained('openai/clip-vit-large-patch14')
clip_processor = CLIPProcessor.from_pretrained('openai/clip-vit-large-patch14')
# Keypoint dictionary for reference
KEYPOINT_DICT = {
'nose': 0,
'left_eye': 1,
'right_eye': 2,
'left_ear': 3,
'right_ear': 4,
'left_shoulder': 5,
'right_shoulder': 6,
'left_elbow': 7,
'right_elbow': 8,
'left_wrist': 9,
'right_wrist': 10,
'left_hip': 11,
'right_hip': 12,
'left_knee': 13,
'right_knee': 14,
'left_ankle': 15,
'right_ankle': 16
}
app = Flask(__name__)
@app.route('/process_video', methods=['POST'])
def process_video():
try:
# Clear previous cache
gc.collect()
torch.cuda.empty_cache()
# Get the video URL from the request
video_url = request.json.get('videoURL')
height = request.json.get('height')
weight = request.json.get('weight')
wingspan = request.json.get('wingspan')
if not video_url:
return jsonify({"error": "No video URL provided"}), 400
if not all([height, weight, wingspan]):
return jsonify({"error": "Height, weight, and wingspan are required"}), 400
# Download the video from the S3 URL
with NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
response = requests.get(video_url)
if response.status_code != 200:
return jsonify({"error": "Failed to download video from the provided URL"}), 400
temp_video_file.write(response.content)
video_path = temp_video_file.name
# Open the video file
cap = cv2.VideoCapture(video_path)
frames = []
# Extract 60 frames from the video
success, frame = cap.read()
frame_count = 0
while success and frame_count < 20:
frames.append(frame)
success, frame = cap.read()
frame_count += 1
cap.release()
os.remove(video_path)
# Process each frame with MoveNet (to get 3D keypoints and detect stance)
movenet_results = []
stances = []
hip_rotations = []
arm_extensions = []
stepping_jabs = []
guard_up = []
hand_returned = []
hips_width_apart = []
leg_angle_correct = []
punch_started = False
initial_left_wrist = None
initial_right_wrist = None
for frame_index, frame in enumerate(frames):
input_tensor = tf.image.resize_with_pad(tf.convert_to_tensor(frame, dtype=tf.uint8), 128, 128)
input_tensor = tf.cast(input_tensor, dtype=tf.int32) # Cast to int32 instead of float32
input_tensor = tf.expand_dims(input_tensor, axis=0)
keypoints = movenet_model.signatures['serving_default'](input_tensor)
keypoints_3d = keypoints['output_0'][0].numpy().tolist() # Assuming the model returns 3D keypoints
movenet_results.append(keypoints_3d)
# Detect stance based on keypoints (using ankles and wrists)
left_ankle = keypoints_3d[KEYPOINT_DICT['left_ankle']]
right_ankle = keypoints_3d[KEYPOINT_DICT['right_ankle']]
left_wrist = keypoints_3d[KEYPOINT_DICT['left_wrist']]
right_wrist = keypoints_3d[KEYPOINT_DICT['right_wrist']]
if right_ankle[0] < left_ankle[0] and right_wrist[0] < left_wrist[0]:
stance = "orthodox"
elif left_ankle[0] < right_ankle[0] and left_wrist[0] < right_wrist[0]:
stance = "southpaw"
else:
stance = "unknown"
stances.append(stance)
# Detect if guard is up (both hands near eye level at the side of the head)
nose = keypoints_3d[KEYPOINT_DICT['nose']]
guard_threshold = 0.1 # Threshold distance to consider hands near the head
left_hand_near_head = abs(left_wrist[1] - nose[1]) < guard_threshold
right_hand_near_head = abs(right_wrist[1] - nose[1]) < guard_threshold
guard_up.append(left_hand_near_head and right_hand_near_head)
# Determine if the punch has started (based on wrist movement)
if frame_index > 0:
previous_left_wrist = movenet_results[frame_index - 1][KEYPOINT_DICT['left_wrist']]
previous_right_wrist = movenet_results[frame_index - 1][KEYPOINT_DICT['right_wrist']]
if stance == "orthodox" and (left_wrist[0] - previous_left_wrist[0]) > 0.05:
punch_started = True
if initial_left_wrist is None:
initial_left_wrist = left_wrist
elif stance == "southpaw" and (right_wrist[0] - previous_right_wrist[0]) > 0.05:
punch_started = True
if initial_right_wrist is None:
initial_right_wrist = right_wrist
# Detect hip rotation (based on left and right hips, considering stance and punch start)
left_hip = keypoints_3d[KEYPOINT_DICT['left_hip']]
right_hip = keypoints_3d[KEYPOINT_DICT['right_hip']]
if punch_started:
if stance == "orthodox":
hip_rotation = right_hip[0] - left_hip[0] # Right hip should move forward
elif stance == "southpaw":
hip_rotation = left_hip[0] - right_hip[0] # Left hip should move forward
else:
hip_rotation = 0
else:
hip_rotation = 0
hip_rotations.append(hip_rotation)
# Detect full arm extension (based on shoulder, elbow, and wrist, considering stance)
left_shoulder = keypoints_3d[KEYPOINT_DICT['left_shoulder']]
left_elbow = keypoints_3d[KEYPOINT_DICT['left_elbow']]
right_shoulder = keypoints_3d[KEYPOINT_DICT['right_shoulder']]
right_elbow = keypoints_3d[KEYPOINT_DICT['right_elbow']]
if stance == "orthodox":
lead_arm_extension = np.linalg.norm(np.array(left_wrist) - np.array(left_shoulder))
elif stance == "southpaw":
lead_arm_extension = np.linalg.norm(np.array(right_wrist) - np.array(right_shoulder))
else:
lead_arm_extension = 0
arm_extensions.append(lead_arm_extension)
# Detect stepping with the jab and coming back (based on ankles, considering stance and punch start)
if punch_started and frame_index > 0:
previous_left_ankle = movenet_results[frame_index - 1][KEYPOINT_DICT['left_ankle']]
previous_right_ankle = movenet_results[frame_index - 1][KEYPOINT_DICT['right_ankle']]
if stance == "orthodox":
step_movement = (left_ankle[0] - previous_left_ankle[0]) > 0.05 # Lead foot is left
elif stance == "southpaw":
step_movement = (right_ankle[0] - previous_right_ankle[0]) > 0.05 # Lead foot is right
else:
step_movement = False
stepping_jabs.append(step_movement)
else:
stepping_jabs.append(False)
# Detect if the hand returns to the initial position after the punch
if punch_started:
if stance == "orthodox" and initial_left_wrist is not None:
hand_returned.append(np.linalg.norm(np.array(left_wrist) - np.array(initial_left_wrist)) < 0.05)
elif stance == "southpaw" and initial_right_wrist is not None:
hand_returned.append(np.linalg.norm(np.array(right_wrist) - np.array(initial_right_wrist)) < 0.05)
else:
hand_returned.append(False)
else:
hand_returned.append(False)
# Detect if hips are shoulder width apart
left_shoulder = keypoints_3d[KEYPOINT_DICT['left_shoulder']]
right_shoulder = keypoints_3d[KEYPOINT_DICT['right_shoulder']]
shoulder_width = abs(left_shoulder[0] - right_shoulder[0])
hips_width = abs(left_hip[0] - right_hip[0])
hips_width_apart.append(hips_width > 0.9 * shoulder_width and hips_width < 1.1 * shoulder_width)
# Detect if the back leg is at a 45 degree angle outward (for orthodox and southpaw)
if stance == "orthodox":
right_leg_angle = np.arctan2(right_ankle[1] - right_hip[1], right_ankle[0] - right_hip[0]) * 180 / np.pi
leg_angle_correct.append(40 <= right_leg_angle <= 50)
elif stance == "southpaw":
left_leg_angle = np.arctan2(left_ankle[1] - left_hip[1], left_ankle[0] - left_hip[0]) * 180 / np.pi
leg_angle_correct.append(40 <= left_leg_angle <= 50)
else:
leg_angle_correct.append(False)
# Generate captions for all 60 frames using BLIP
captions = []
for frame in frames:
inputs = blip_processor(images=frame, return_tensors="pt")
with torch.no_grad():
caption = blip_model.generate(**inputs)
captions.append(blip_processor.decode(caption[0], skip_special_tokens=True))
# Use CLIP to assess the similarity of frames to a Muay Thai jab prompt, including stance
clip_results = []
for i, frame in enumerate(frames):
stance = stances[i]
prompt = f"A person performing a Muay Thai jab in {stance} stance at {height} in in height, {weight} lbs in weight, and a wingspan of {wingspan} cm, with hip rotation of {hip_rotations[i]:.2f}, arm extension of {arm_extensions[i]:.2f}, {'stepping forward' if stepping_jabs[i] else 'not stepping'}, {'guard up' if guard_up[i] else 'guard down'}, {'hand returned to initial position' if hand_returned[i] else 'hand not returned'}, {'hips shoulder width apart' if hips_width_apart[i] else 'hips not shoulder width apart'}, and {'correct leg angle' if leg_angle_correct[i] else 'incorrect leg angle'}"
text_inputs = clip_processor(text=[prompt], return_tensors="pt")
image_inputs = clip_processor(images=frame, return_tensors="pt")
with torch.no_grad():
image_features = clip_model.get_image_features(**image_inputs)
text_features = clip_model.get_text_features(**text_inputs)
similarity = torch.nn.functional.cosine_similarity(image_features, text_features)
clip_results.append(similarity.item())
# Calculate score based on CLIP results and BLIP captions
avg_clip_similarity = sum(clip_results) / len(clip_results) if clip_results else 0
guard_score = sum(guard_up) / len(guard_up) if guard_up else 0
hand_return_score = sum(hand_returned) / len(hand_returned) if hand_returned else 0
hips_width_score = sum(hips_width_apart) / len(hips_width_apart) if hips_width_apart else 0
leg_angle_score = sum(leg_angle_correct) / len(leg_angle_correct) if leg_angle_correct else 0
overall_score = (avg_clip_similarity + guard_score + hand_return_score + hips_width_score + leg_angle_score) / 5
# Scale the overall score to a range of 0 - 10
overall_score = max(0, min(overall_score * 10, 10))
# Return combined results
response = {
"movenet_results": movenet_results,
"blip_captions": captions,
"clip_similarities": clip_results,
"stances": stances,
"hip_rotations": hip_rotations,
"arm_extensions": arm_extensions,
"stepping_jabs": stepping_jabs,
"hips_width_apart": hips_width_apart,
"leg_angle_correct": leg_angle_correct,
"overall_score": overall_score,
"guard_score": guard_score,
"hand_return_score": hand_return_score,
"hips_width_score":hips_width_score,
"leg_angle_score": leg_angle_score,
}
return jsonify(response)
except Exception as e:
return jsonify({"error": str(e)}), 500
# if __name__ == '__main__':
# app.run(host='0.0.0.0', port=7860)
if __name__ == '__main__':
# Clear any cache before starting the Flask server
gc.collect()
torch.cuda.empty_cache()
# Start the Flask app
app.run(host='0.0.0.0', port=7860)
|