Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,267 @@
|
|
1 |
from flask import Flask, request, jsonify
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
7 |
|
8 |
-
# Load
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
# Load
|
13 |
-
|
14 |
-
|
15 |
|
16 |
-
#
|
17 |
-
|
|
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
def pose_estimation():
|
27 |
-
try:
|
28 |
-
# Accept an image file as input for pose estimation
|
29 |
-
image = request.files['image']
|
30 |
-
img = Image.open(BytesIO(image.read()))
|
31 |
-
|
32 |
-
# Preprocess the image
|
33 |
-
img_tensor = transform(img).unsqueeze(0) # Add batch dimension
|
34 |
-
|
35 |
-
# Perform pose estimation
|
36 |
-
with torch.no_grad():
|
37 |
-
pose_result = sapiens_model(img_tensor)
|
38 |
-
|
39 |
-
return jsonify({"pose_result": pose_result.tolist()})
|
40 |
-
except Exception as e:
|
41 |
-
return jsonify({"error": str(e)}), 500
|
42 |
|
43 |
-
@app.route('/
|
44 |
-
def
|
45 |
try:
|
46 |
-
#
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
except Exception as e:
|
55 |
return jsonify({"error": str(e)}), 500
|
56 |
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration, CLIPProcessor, CLIPModel
|
6 |
import torch
|
7 |
+
import os
|
8 |
+
import requests
|
9 |
+
from tempfile import NamedTemporaryFile
|
|
|
10 |
|
11 |
+
# Load MoveNet model
|
12 |
+
movenet_model_path = '/models/movenet/movenet_lightning'
|
13 |
+
movenet_model = tf.saved_model.load(movenet_model_path)
|
14 |
|
15 |
+
# Load BLIP model
|
16 |
+
blip_model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-large')
|
17 |
+
blip_processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-large')
|
18 |
|
19 |
+
# Load CLIP model
|
20 |
+
clip_model = CLIPModel.from_pretrained('openai/clip-vit-large-patch14')
|
21 |
+
clip_processor = CLIPProcessor.from_pretrained('openai/clip-vit-large-patch14')
|
22 |
|
23 |
+
# Keypoint dictionary for reference
|
24 |
+
KEYPOINT_DICT = {
|
25 |
+
'nose': 0,
|
26 |
+
'left_eye': 1,
|
27 |
+
'right_eye': 2,
|
28 |
+
'left_ear': 3,
|
29 |
+
'right_ear': 4,
|
30 |
+
'left_shoulder': 5,
|
31 |
+
'right_shoulder': 6,
|
32 |
+
'left_elbow': 7,
|
33 |
+
'right_elbow': 8,
|
34 |
+
'left_wrist': 9,
|
35 |
+
'right_wrist': 10,
|
36 |
+
'left_hip': 11,
|
37 |
+
'right_hip': 12,
|
38 |
+
'left_knee': 13,
|
39 |
+
'right_knee': 14,
|
40 |
+
'left_ankle': 15,
|
41 |
+
'right_ankle': 16
|
42 |
+
}
|
43 |
|
44 |
+
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
@app.route('/process_video', methods=['POST'])
|
47 |
+
def process_video():
|
48 |
try:
|
49 |
+
# Get the video URL from the request
|
50 |
+
video_url = request.json.get('videoURL')
|
51 |
+
height = request.json.get('height')
|
52 |
+
weight = request.json.get('weight')
|
53 |
+
wingspan = request.json.get('wingspan')
|
54 |
+
|
55 |
+
|
56 |
+
if not video_url:
|
57 |
+
return jsonify({"error": "No video URL provided"}), 400
|
58 |
+
|
59 |
+
|
60 |
+
if not all([height, weight, wingspan]):
|
61 |
+
return jsonify({"error": "Height, weight, and wingspan are required"}), 400
|
62 |
+
|
63 |
+
|
64 |
+
# Download the video from the S3 URL
|
65 |
+
with NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
|
66 |
+
response = requests.get(video_url)
|
67 |
+
if response.status_code != 200:
|
68 |
+
return jsonify({"error": "Failed to download video from the provided URL"}), 400
|
69 |
+
temp_video_file.write(response.content)
|
70 |
+
video_path = temp_video_file.name
|
71 |
+
|
72 |
+
# Open the video file
|
73 |
+
cap = cv2.VideoCapture(video_path)
|
74 |
+
frames = []
|
75 |
+
|
76 |
+
# Extract 60 frames from the video
|
77 |
+
success, frame = cap.read()
|
78 |
+
frame_count = 0
|
79 |
+
while success and frame_count < 60:
|
80 |
+
frames.append(frame)
|
81 |
+
success, frame = cap.read()
|
82 |
+
frame_count += 1
|
83 |
+
|
84 |
+
cap.release()
|
85 |
+
os.remove(video_path)
|
86 |
+
|
87 |
+
# Process each frame with MoveNet (to get 3D keypoints and detect stance)
|
88 |
+
movenet_results = []
|
89 |
+
stances = []
|
90 |
+
hip_rotations = []
|
91 |
+
arm_extensions = []
|
92 |
+
stepping_jabs = []
|
93 |
+
guard_up = []
|
94 |
+
hand_returned = []
|
95 |
+
hips_width_apart = []
|
96 |
+
leg_angle_correct = []
|
97 |
+
punch_started = False
|
98 |
+
initial_left_wrist = None
|
99 |
+
initial_right_wrist = None
|
100 |
+
|
101 |
+
for frame_index, frame in enumerate(frames):
|
102 |
+
input_tensor = tf.image.resize_with_pad(tf.convert_to_tensor(frame, dtype=tf.uint8), 256, 256)
|
103 |
+
input_tensor = tf.cast(input_tensor, dtype=tf.float32)
|
104 |
+
input_tensor = tf.expand_dims(input_tensor, axis=0)
|
105 |
+
keypoints = movenet_model.signatures['serving_default'](input_tensor)
|
106 |
+
keypoints_3d = keypoints['output_0'][0].numpy().tolist() # Assuming the model returns 3D keypoints
|
107 |
+
movenet_results.append(keypoints_3d)
|
108 |
+
|
109 |
+
# Detect stance based on keypoints (using ankles and wrists)
|
110 |
+
left_ankle = keypoints_3d[KEYPOINT_DICT['left_ankle']]
|
111 |
+
right_ankle = keypoints_3d[KEYPOINT_DICT['right_ankle']]
|
112 |
+
left_wrist = keypoints_3d[KEYPOINT_DICT['left_wrist']]
|
113 |
+
right_wrist = keypoints_3d[KEYPOINT_DICT['right_wrist']]
|
114 |
+
|
115 |
+
if right_ankle[0] < left_ankle[0] and right_wrist[0] < left_wrist[0]:
|
116 |
+
stance = "orthodox"
|
117 |
+
elif left_ankle[0] < right_ankle[0] and left_wrist[0] < right_wrist[0]:
|
118 |
+
stance = "southpaw"
|
119 |
+
else:
|
120 |
+
stance = "unknown"
|
121 |
+
stances.append(stance)
|
122 |
+
|
123 |
+
# Detect if guard is up (both hands near eye level at the side of the head)
|
124 |
+
nose = keypoints_3d[KEYPOINT_DICT['nose']]
|
125 |
+
guard_threshold = 0.1 # Threshold distance to consider hands near the head
|
126 |
+
left_hand_near_head = abs(left_wrist[1] - nose[1]) < guard_threshold
|
127 |
+
right_hand_near_head = abs(right_wrist[1] - nose[1]) < guard_threshold
|
128 |
+
guard_up.append(left_hand_near_head and right_hand_near_head)
|
129 |
+
|
130 |
+
# Determine if the punch has started (based on wrist movement)
|
131 |
+
if frame_index > 0:
|
132 |
+
previous_left_wrist = movenet_results[frame_index - 1][KEYPOINT_DICT['left_wrist']]
|
133 |
+
previous_right_wrist = movenet_results[frame_index - 1][KEYPOINT_DICT['right_wrist']]
|
134 |
+
|
135 |
+
if stance == "orthodox" and (left_wrist[0] - previous_left_wrist[0]) > 0.05:
|
136 |
+
punch_started = True
|
137 |
+
if initial_left_wrist is None:
|
138 |
+
initial_left_wrist = left_wrist
|
139 |
+
elif stance == "southpaw" and (right_wrist[0] - previous_right_wrist[0]) > 0.05:
|
140 |
+
punch_started = True
|
141 |
+
if initial_right_wrist is None:
|
142 |
+
initial_right_wrist = right_wrist
|
143 |
+
|
144 |
+
# Detect hip rotation (based on left and right hips, considering stance and punch start)
|
145 |
+
left_hip = keypoints_3d[KEYPOINT_DICT['left_hip']]
|
146 |
+
right_hip = keypoints_3d[KEYPOINT_DICT['right_hip']]
|
147 |
+
if punch_started:
|
148 |
+
if stance == "orthodox":
|
149 |
+
hip_rotation = right_hip[0] - left_hip[0] # Right hip should move forward
|
150 |
+
elif stance == "southpaw":
|
151 |
+
hip_rotation = left_hip[0] - right_hip[0] # Left hip should move forward
|
152 |
+
else:
|
153 |
+
hip_rotation = 0
|
154 |
+
else:
|
155 |
+
hip_rotation = 0
|
156 |
+
hip_rotations.append(hip_rotation)
|
157 |
+
|
158 |
+
# Detect full arm extension (based on shoulder, elbow, and wrist, considering stance)
|
159 |
+
left_shoulder = keypoints_3d[KEYPOINT_DICT['left_shoulder']]
|
160 |
+
left_elbow = keypoints_3d[KEYPOINT_DICT['left_elbow']]
|
161 |
+
right_shoulder = keypoints_3d[KEYPOINT_DICT['right_shoulder']]
|
162 |
+
right_elbow = keypoints_3d[KEYPOINT_DICT['right_elbow']]
|
163 |
+
|
164 |
+
if stance == "orthodox":
|
165 |
+
lead_arm_extension = np.linalg.norm(np.array(left_wrist) - np.array(left_shoulder))
|
166 |
+
elif stance == "southpaw":
|
167 |
+
lead_arm_extension = np.linalg.norm(np.array(right_wrist) - np.array(right_shoulder))
|
168 |
+
else:
|
169 |
+
lead_arm_extension = 0
|
170 |
+
arm_extensions.append(lead_arm_extension)
|
171 |
+
|
172 |
+
# Detect stepping with the jab and coming back (based on ankles, considering stance and punch start)
|
173 |
+
if punch_started and frame_index > 0:
|
174 |
+
previous_left_ankle = movenet_results[frame_index - 1][KEYPOINT_DICT['left_ankle']]
|
175 |
+
previous_right_ankle = movenet_results[frame_index - 1][KEYPOINT_DICT['right_ankle']]
|
176 |
+
|
177 |
+
if stance == "orthodox":
|
178 |
+
step_movement = (left_ankle[0] - previous_left_ankle[0]) > 0.05 # Lead foot is left
|
179 |
+
elif stance == "southpaw":
|
180 |
+
step_movement = (right_ankle[0] - previous_right_ankle[0]) > 0.05 # Lead foot is right
|
181 |
+
else:
|
182 |
+
step_movement = False
|
183 |
+
stepping_jabs.append(step_movement)
|
184 |
+
else:
|
185 |
+
stepping_jabs.append(False)
|
186 |
+
|
187 |
+
# Detect if the hand returns to the initial position after the punch
|
188 |
+
if punch_started:
|
189 |
+
if stance == "orthodox" and initial_left_wrist is not None:
|
190 |
+
hand_returned.append(np.linalg.norm(np.array(left_wrist) - np.array(initial_left_wrist)) < 0.05)
|
191 |
+
elif stance == "southpaw" and initial_right_wrist is not None:
|
192 |
+
hand_returned.append(np.linalg.norm(np.array(right_wrist) - np.array(initial_right_wrist)) < 0.05)
|
193 |
+
else:
|
194 |
+
hand_returned.append(False)
|
195 |
+
else:
|
196 |
+
hand_returned.append(False)
|
197 |
+
|
198 |
+
# Detect if hips are shoulder width apart
|
199 |
+
left_shoulder = keypoints_3d[KEYPOINT_DICT['left_shoulder']]
|
200 |
+
right_shoulder = keypoints_3d[KEYPOINT_DICT['right_shoulder']]
|
201 |
+
shoulder_width = abs(left_shoulder[0] - right_shoulder[0])
|
202 |
+
hips_width = abs(left_hip[0] - right_hip[0])
|
203 |
+
hips_width_apart.append(hips_width > 0.9 * shoulder_width and hips_width < 1.1 * shoulder_width)
|
204 |
+
|
205 |
+
# Detect if the back leg is at a 45 degree angle outward (for orthodox and southpaw)
|
206 |
+
if stance == "orthodox":
|
207 |
+
right_leg_angle = np.arctan2(right_ankle[1] - right_hip[1], right_ankle[0] - right_hip[0]) * 180 / np.pi
|
208 |
+
leg_angle_correct.append(40 <= right_leg_angle <= 50)
|
209 |
+
elif stance == "southpaw":
|
210 |
+
left_leg_angle = np.arctan2(left_ankle[1] - left_hip[1], left_ankle[0] - left_hip[0]) * 180 / np.pi
|
211 |
+
leg_angle_correct.append(40 <= left_leg_angle <= 50)
|
212 |
+
else:
|
213 |
+
leg_angle_correct.append(False)
|
214 |
+
|
215 |
+
# Generate captions for all 60 frames using BLIP
|
216 |
+
captions = []
|
217 |
+
for frame in frames:
|
218 |
+
inputs = blip_processor(images=frame, return_tensors="pt")
|
219 |
+
with torch.no_grad():
|
220 |
+
caption = blip_model.generate(**inputs)
|
221 |
+
captions.append(blip_processor.decode(caption[0], skip_special_tokens=True))
|
222 |
+
|
223 |
+
# Use CLIP to assess the similarity of frames to a Muay Thai jab prompt, including stance
|
224 |
+
clip_results = []
|
225 |
+
for i, frame in enumerate(frames):
|
226 |
+
stance = stances[i]
|
227 |
+
prompt = f"A person performing a Muay Thai jab in {stance} stance at {height} in in height, {weight} lbs in weight, and a wingspan of {wingspan} cm, with hip rotation of {hip_rotations[i]:.2f}, arm extension of {arm_extensions[i]:.2f}, {'stepping forward' if stepping_jabs[i] else 'not stepping'}, {'guard up' if guard_up[i] else 'guard down'}, {'hand returned to initial position' if hand_returned[i] else 'hand not returned'}, {'hips shoulder width apart' if hips_width_apart[i] else 'hips not shoulder width apart'}, and {'correct leg angle' if leg_angle_correct[i] else 'incorrect leg angle'}"
|
228 |
+
text_inputs = clip_processor(text=[prompt], return_tensors="pt")
|
229 |
+
image_inputs = clip_processor(images=frame, return_tensors="pt")
|
230 |
+
with torch.no_grad():
|
231 |
+
image_features = clip_model.get_image_features(**image_inputs)
|
232 |
+
text_features = clip_model.get_text_features(**text_inputs)
|
233 |
+
similarity = torch.nn.functional.cosine_similarity(image_features, text_features)
|
234 |
+
clip_results.append(similarity.item())
|
235 |
+
|
236 |
+
# Calculate score based on CLIP results and BLIP captions
|
237 |
+
avg_clip_similarity = sum(clip_results) / len(clip_results) if clip_results else 0
|
238 |
+
guard_score = sum(guard_up) / len(guard_up) if guard_up else 0
|
239 |
+
hand_return_score = sum(hand_returned) / len(hand_returned) if hand_returned else 0
|
240 |
+
hips_width_score = sum(hips_width_apart) / len(hips_width_apart) if hips_width_apart else 0
|
241 |
+
leg_angle_score = sum(leg_angle_correct) / len(leg_angle_correct) if leg_angle_correct else 0
|
242 |
+
overall_score = (avg_clip_similarity + guard_score + hand_return_score + hips_width_score + leg_angle_score) / 5
|
243 |
|
244 |
+
# Scale the overall score to a range of 0 - 10
|
245 |
+
overall_score = max(0, min(overall_score * 10, 10))
|
246 |
|
247 |
+
# Return combined results
|
248 |
+
response = {
|
249 |
+
"movenet_results": movenet_results,
|
250 |
+
"blip_captions": captions,
|
251 |
+
"clip_similarities": clip_results,
|
252 |
+
"stances": stances,
|
253 |
+
"hip_rotations": hip_rotations,
|
254 |
+
"arm_extensions": arm_extensions,
|
255 |
+
"stepping_jabs": stepping_jabs,
|
256 |
+
"hips_width_apart": hips_width_apart,
|
257 |
+
"leg_angle_correct": leg_angle_correct,
|
258 |
+
"overall_score": overall_score,
|
259 |
+
"guard_score": guard_score,
|
260 |
+
"hand_return_score": hand_return_score,
|
261 |
+
"hips_width_score":hips_width_score,
|
262 |
+
"leg_angle_score": leg_angle_score,
|
263 |
+
}
|
264 |
+
return jsonify(response)
|
265 |
except Exception as e:
|
266 |
return jsonify({"error": str(e)}), 500
|
267 |
|