File size: 5,535 Bytes
d0e2dd3 9e2e2cc d0e2dd3 9e2e2cc d0e2dd3 ea9291d d0e2dd3 615fbaf d0e2dd3 90c5963 d0e2dd3 9e2e2cc d0e2dd3 2479bc9 d0e2dd3 eaa5c1c d0e2dd3 2479bc9 d0e2dd3 2479bc9 d0e2dd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
from pyvis.network import Network
import numpy as np
import pandas as pd
import os
from datasets import load_dataset
from datasets import Features
from datasets import Value
from datasets import Dataset
import matplotlib.pyplot as plt
Secret_token = os.getenv('HF_Token')
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train')
dataset2 = load_dataset('FDSRashid/hadith_info',data_files = 'Taraf_Info.csv', token = Secret_token, split = 'train')
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'), 'Official Name':Value('string'), 'Title Name':Value('string'), 'Generation': Value('string')} )
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features )
narrator_bios = narrator_bios['train'].to_pandas()
narrator_bios.loc[49845, 'Narrator Rank'] = 'رسول الله'
narrator_bios.loc[49845, 'Number of Narrations'] = 0
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int)
narrator_bios.loc[49845, 'Number of Narrations'] = 327512
narrator_bios['Generation'] = narrator_bios['Generation'].replace([None], [-1])
narrator_bios['Generation'] = narrator_bios['Generation'].astype(int)
edge_info = dataset.to_pandas()
taraf_info = dataset2.to_pandas()
min_year = int(taraf_info['Year'].min())
max_year = int(taraf_info['Year'].max())
cmap = plt.colormaps['cool']
def value_to_hex(value):
rgba_color = cmap(value)
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255))
def subsetEdges(fstyear, lstyear):
info = taraf_info[(taraf_info['Year'] >= fstyear)& (taraf_info['Year'] <= lstyear)]
narrators = edge_info[edge_info['Edge_ID'].isin(info['ID'].unique())]
return narrators
def splitIsnad(dataframe):
teacher_student =dataframe['Edge_Name'].str.split(' TO ')
dataframe['Teacher'] = teacher_student.apply(lambda x: x[0])
dataframe['Student'] = teacher_student.apply(lambda x: x[1])
return dataframe
def network_narrator(narrator_id, fst_year, lst_year, yaxis):
edges = subsetEdges(fst_year, lst_year)
edges_single = edges[(edges['Teacher_ID']==narrator_id) | (edges['Student_ID']==narrator_id)]
edges_prepped = splitIsnad(edges_single)
net = Network(directed =True)
for _, row in edges_prepped.iterrows():
source = row['Teacher']
target = row['Student']
attribute_value = row[yaxis]
edge_color = value_to_hex(attribute_value)
teacher_info = narrator_bios[narrator_bios['Rawi ID'] == row['Teacher_ID']]
student_info = narrator_bios[narrator_bios['Rawi ID'] == row['Student_ID']]
teacher_narrations = teacher_info['Number of Narrations'].to_list()[0]
student_narrations = student_info['Number of Narrations'].to_list()[0]
net.add_node(source, color=value_to_hex(teacher_narrations), font = {'size':30, 'color': 'orange'}, label = f"{source}\n{teacher_narrations}")
net.add_node(target, color=value_to_hex(student_narrations), font = {'size': 20, 'color': 'red'}, label = f"{target}\n{student_narrations}")
net.add_edge(source, target, color=edge_color, value=attribute_value, label = f"{yaxis}:{attribute_value}")
net.barnes_hut(gravity=-3000, central_gravity=0.3, spring_length=200)
html = net.generate_html()
html = html.replace("'", "\"")
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""", edges_prepped[['Teacher', 'Student', 'Tarafs', 'Hadiths', 'Isnads', 'Books']]
def narrator_retriever(name):
return narrator_bios[(narrator_bios['Official Name'].str.contains(name)) | (narrator_bios['Famous Name'].str.contains(name)) | (narrator_bios['Rawi ID'].astype(str) == name)][['Rawi ID', 'Title Name', 'Official Name', 'Famous Name', 'Number of Narrations', 'Narrator Rank', 'Generation' ]]
with gr.Blocks() as demo:
gr.Markdown("Search Narrators using this tool or Visualize Network of a Narrator")
with gr.Tab("Search Narrator"):
text_input = gr.Textbox()
text_output = gr.DataFrame()
text_button = gr.Button("Search")
text_button.click(narrator_retriever, inputs=text_input, outputs=text_output)
with gr.Tab("Visualize Network"):
with gr.Row():
image_input = gr.Number()
FirstYear = gr.Slider(min_year, max_year, value = -11, label = 'Begining', info = 'Choose the first year to display Narrators')
Last_Year = gr.Slider(min_year, max_year, value = 9, label = 'End', info = 'Choose the last year to display Narrators')
Yaxis = gr.Dropdown(choices = ['Tarafs', 'Hadiths', 'Isnads', 'Books'], value = 'Tarafs', label = 'Variable to Display', info = 'Choose the variable to visualize.')
image_output = gr.HTML()
image_button = gr.Button("Visualize!")
image_button.click(network_narrator, inputs=[image_input, FirstYear, Last_Year, Yaxis], outputs=[image_output, gr.DataFrame()])
demo.launch()
|