Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from pyvis.network import Network
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import os
|
7 |
+
from datasets import load_dataset
|
8 |
+
from datasets import Features
|
9 |
+
from datasets import Value
|
10 |
+
from datasets import Dataset
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
Secret_token = os.getenv('HF_Token')
|
16 |
+
|
17 |
+
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train')
|
18 |
+
dataset2 = load_dataset('FDSRashid/hadith_info',data_files = 'Taraf_Info.csv', token = Secret_token, split = 'train')
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string')}, )
|
23 |
+
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features )
|
24 |
+
narrator_bios = narrator_bios['train'].to_pandas()
|
25 |
+
narrator_bios.loc[49845, 'Narrator Rank'] = 'رسول الله'
|
26 |
+
narrator_bios.loc[49845, 'Number of Narrations'] = 0
|
27 |
+
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int)
|
28 |
+
narrator_bios.loc[49845, 'Number of Narrations'] = 327512
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
edge_info = dataset.to_pandas()
|
33 |
+
taraf_info = dataset2.to_pandas()
|
34 |
+
min_year = int(taraf_info['Year'].min())
|
35 |
+
max_year = int(taraf_info['Year'].max())
|
36 |
+
cmap = plt.colormaps['cool']
|
37 |
+
def value_to_hex(value):
|
38 |
+
rgba_color = cmap(value)
|
39 |
+
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255))
|
40 |
+
|
41 |
+
def subsetEdges(fstyear, lstyear):
|
42 |
+
info = taraf_info[(taraf_info['Year'] >= fstyear)& (taraf_info['Year'] <= lstyear)]
|
43 |
+
narrators = edge_info[edge_info['Edge_ID'].isin(info['ID'].unique())]
|
44 |
+
return narrators
|
45 |
+
def splitIsnad(dataframe):
|
46 |
+
teacher_student =dataframe['Edge_Name'].str.split(' TO ')
|
47 |
+
dataframe['Teacher'] = teacher_student.apply(lambda x: x[0])
|
48 |
+
dataframe['Student'] = teacher_student.apply(lambda x: x[1])
|
49 |
+
return dataframe
|
50 |
+
|
51 |
+
|
52 |
+
def network_narrator(narrator_id, fst_year, lst_year, yaxis):
|
53 |
+
edges = subsetEdges(fst_year, lst_year)
|
54 |
+
edges_single = edges[edges['Teacher_ID']==narrator_id | edges['Student_ID']==narrator_id]
|
55 |
+
edges_prepped = splitIsnad(edges_single)
|
56 |
+
net = Network()
|
57 |
+
for _, row in edges_prepped.iterrows():
|
58 |
+
source = row['Teacher']
|
59 |
+
target = row['Student']
|
60 |
+
attribute_value = row[yaxis]
|
61 |
+
edge_color = value_to_hex(attribute_value)
|
62 |
+
teacher_info = narrator_bios[narrator_bios['Rawi ID'] == row['Teacher_ID']]
|
63 |
+
student_info = narrator_bios[narrator_bios['Rawi ID'] == row['Student_ID']]
|
64 |
+
teacher_narrations = teacher_info['Number of Narrations'].to_list()[0]
|
65 |
+
student_narrations = student_info['Number of Narrations'].to_list()[0]
|
66 |
+
net.add_node(source, color=value_to_hex(teacher_narrations), font = {'size':30, 'color': 'orange'}, label = f"{source}\n{teacher_narrations}")
|
67 |
+
net.add_node(target, color=value_to_hex(student_narrations), font = {'size': 20, 'color': 'red'}, label = f"{target}\n{student_narrations}")
|
68 |
+
net.add_edge(source, target, color=edge_color, value=attribute_value, label = f"{yaxis}:{attribute_value}")
|
69 |
+
|
70 |
+
|
71 |
+
net.barnes_hut(gravity=-3000, central_gravity=0.3, spring_length=200)
|
72 |
+
html = net.generate_html()
|
73 |
+
html = html.replace("'", "\"")
|
74 |
+
|
75 |
+
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
|
76 |
+
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
77 |
+
allow-scripts allow-same-origin allow-popups
|
78 |
+
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
79 |
+
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
|
80 |
+
|
81 |
+
def narrator_retriever(name):
|
82 |
+
return narrator_bios[narrator_bios['Official Name'] == name | narrator_bios['Famous Name'] == name][['Rawi ID', 'Title Name', 'Official Name', 'Famous Name', 'Number of Narrations' ]]
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
with gr.Blocks() as demo:
|
87 |
+
gr.Markdown("Search Narrators using this tool or Visualize Network of a Narrator")
|
88 |
+
with gr.Tab("Search Narrator"):
|
89 |
+
text_input = gr.Textbox()
|
90 |
+
text_output = gr.DataFrame()
|
91 |
+
text_button = gr.Button("Search")
|
92 |
+
with gr.Tab("Visualize Network"):
|
93 |
+
with gr.Row():
|
94 |
+
image_input = gr.Number()
|
95 |
+
FirstYear = gr.Slider(min_year, max_year, value = -11, label = 'Begining', info = 'Choose the first year to display Narrators')
|
96 |
+
Last_Year = gr.Slider(min_year, max_year, value = 9, label = 'End', info = 'Choose the last year to display Narrators')
|
97 |
+
Yaxis = gr.Dropdown(choices = ['Tarafs', 'Hadiths', 'Isnads', 'Books'], value = 'Tarafs', label = 'Variable to Display', info = 'Choose the variable to visualize.')
|
98 |
+
image_output = gr.HTML()
|
99 |
+
image_button = gr.Button("Visualize!")
|
100 |
+
|
101 |
+
text_button.click(narrator_retriever, inputs=text_input, outputs=text_output)
|
102 |
+
image_button.click(network_narrator, inputs=[image_input, FirstYear, Last_Year, Yaxis], outputs=image_output)
|
103 |
+
|
104 |
+
demo.launch()
|
105 |
+
|