File size: 8,358 Bytes
445d3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
"""Implementation of the paper:

LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model
https://arxiv.org/abs/2304.15010

Port for Lit-GPT
"""
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Type

import torch
import torch.nn as nn
from typing_extensions import Self

import lit_gpt
from lit_gpt.adapter import GPT as BaseModel
from lit_gpt.adapter import Block as BaseBlock
from lit_gpt.adapter import CausalSelfAttention as BaseCausalSelfAttention
from lit_gpt.adapter import Config as BaseConfig
from lit_gpt.model import KVCache
from lit_gpt.utils import map_old_state_dict_weights


@dataclass
class Config(BaseConfig):
    @property
    def mlp_class(self) -> Type:
        return getattr(lit_gpt.adapter_v2, self._mlp_class)


def adapter_filter(key: str, value: Any) -> bool:
    adapter_substrings = (
        # regular adapter v1 parameters
        "adapter_wte",
        "gating_factor",
        # adapter v2: new bias and scale used in Linear
        "adapter_scale",
        "adapter_bias",
        # adapter v2: Norm parameters are now trainable
        "norm_1",
        "norm_2",
        "ln_f",
    )
    return any(s in key for s in adapter_substrings)


class AdapterV2Linear(torch.nn.Module):
    def __init__(self, in_features: int, out_features: int, **kwargs) -> None:
        super().__init__()
        self.linear = torch.nn.Linear(in_features, out_features, **kwargs)
        self.adapter_bias = torch.nn.Parameter(torch.zeros(out_features), requires_grad=False)
        self.adapter_scale = torch.nn.Parameter(torch.ones(out_features), requires_grad=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.adapter_scale * (self.linear(x) + self.adapter_bias)

    def reset_parameters(self) -> None:
        nn.init.zeros_(self.adapter_bias)
        nn.init.ones_(self.adapter_scale)


class GPT(BaseModel):
    def __init__(self, config: Config) -> None:
        # Skip the parent class __init__ altogether and replace it to avoid useless allocations
        nn.Module.__init__(self)
        assert config.padded_vocab_size is not None
        self.config = config

        self.lm_head = AdapterV2Linear(config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias)
        self.transformer = nn.ModuleDict(
            dict(
                wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
                h=nn.ModuleList(Block(config, i) for i in range(config.n_layer)),
                ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
            )
        )
        self.max_seq_length = self.config.block_size
        self.mask_cache: Optional[torch.Tensor] = None

    @classmethod
    def from_name(cls, name: str, **kwargs: Any) -> Self:
        return cls(Config.from_name(name, **kwargs))

    def _init_weights(self, module: nn.Module) -> None:
        """Meant to be used with `gpt.apply(gpt._init_weights)`. Unused method left for completeness."""
        super()._init_weights(module)
        if isinstance(module, AdapterV2Linear):
            module.reset_parameters()

    def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
        """For compatibility with base checkpoints."""
        mapping = {"lm_head.weight": "lm_head.linear.weight"}
        state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
        super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)


class Block(BaseBlock):
    """The implementation is identical to `lit_gpt.model.Block` with the exception that
    we replace the attention layer where adaption is implemented."""

    def __init__(self, config: Config, block_idx: int) -> None:
        # Skip the parent class __init__ altogether and replace it to avoid useless allocations
        nn.Module.__init__(self)
        self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps)
        self.attn = CausalSelfAttention(config, block_idx)
        if not config.shared_attention_norm:
            self.norm_2 = config.norm_class(config.n_embd, eps=config.norm_eps)
        self.mlp = config.mlp_class(config)

        self.config = config


class CausalSelfAttention(BaseCausalSelfAttention):
    """A modification of `lit_gpt.adapter.CausalSelfAttention` that uses the Adapter V2 Linear class"""

    def __init__(self, config: Config, block_idx: int) -> None:
        # Skip the parent class __init__ altogether and replace it to avoid useless allocations
        nn.Module.__init__(self)
        shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
        # key, query, value projections for all heads, but in a batch
        self.attn = AdapterV2Linear(in_features=config.n_embd, out_features=shape, bias=config.bias)
        # output projection
        self.proj = AdapterV2Linear(config.n_embd, config.n_embd, bias=config.bias)
        # disabled by default
        self.kv_cache: Optional[KVCache] = None

        if block_idx >= config.adapter_start_layer:
            # adapter embedding layer
            self.adapter_wte = nn.Embedding(config.adapter_prompt_length, config.n_embd)
            # gate for adaption
            self.gating_factor = torch.nn.Parameter(torch.zeros(1, 1, config.n_head, 1))
            # kv cache for inference
            self.adapter_kv_cache: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
        self.block_idx = block_idx

        self.config = config

    def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
        """For compatibility with base checkpoints."""
        mapping = {
            "attn.weight": "attn.linear.weight",
            "attn.bias": "attn.linear.bias",
            "proj.weight": "proj.linear.weight",
            "proj.bias": "proj.linear.bias",
        }
        state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
        # For compatibility with older checkpoints
        if (key := prefix + "gating_factor") in state_dict and state_dict[key].size(1) == self.config.n_head:
            state_dict[key] = state_dict[key].permute(0, 2, 1, 3)
        super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)


class GptNeoxMLP(lit_gpt.model.GptNeoxMLP):
    def __init__(self, config: Config) -> None:
        nn.Module.__init__(self)
        self.fc = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias)

        self.config = config

    def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
        """For compatibility with base checkpoints."""
        mapping = {
            "fc.weight": "fc.linear.weight",
            "fc.bias": "fc.linear.bias",
            "proj.weight": "proj.linear.weight",
            "proj.bias": "proj.linear.bias",
        }
        state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
        super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)


class LLaMAMLP(lit_gpt.model.LLaMAMLP):
    def __init__(self, config: Config) -> None:
        nn.Module.__init__(self)
        self.fc_1 = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.fc_2 = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias)

    def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
        """For compatibility with base checkpoints."""
        mapping = {
            "fc_1.weight": "fc_1.linear.weight",
            "fc_1.bias": "fc_1.linear.bias",
            "fc_2.weight": "fc_2.linear.weight",
            "fc_2.bias": "fc_2.linear.bias",
            "proj.weight": "proj.linear.weight",
            "proj.bias": "proj.linear.bias",
        }
        state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
        super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)


def mark_only_adapter_v2_as_trainable(model: GPT) -> None:
    """Sets requires_grad=False for all non-adapter weights"""
    for name, param in model.named_parameters():
        param.requires_grad = adapter_filter(name, param)