Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,358 Bytes
445d3d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
"""Implementation of the paper:
LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model
https://arxiv.org/abs/2304.15010
Port for Lit-GPT
"""
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Type
import torch
import torch.nn as nn
from typing_extensions import Self
import lit_gpt
from lit_gpt.adapter import GPT as BaseModel
from lit_gpt.adapter import Block as BaseBlock
from lit_gpt.adapter import CausalSelfAttention as BaseCausalSelfAttention
from lit_gpt.adapter import Config as BaseConfig
from lit_gpt.model import KVCache
from lit_gpt.utils import map_old_state_dict_weights
@dataclass
class Config(BaseConfig):
@property
def mlp_class(self) -> Type:
return getattr(lit_gpt.adapter_v2, self._mlp_class)
def adapter_filter(key: str, value: Any) -> bool:
adapter_substrings = (
# regular adapter v1 parameters
"adapter_wte",
"gating_factor",
# adapter v2: new bias and scale used in Linear
"adapter_scale",
"adapter_bias",
# adapter v2: Norm parameters are now trainable
"norm_1",
"norm_2",
"ln_f",
)
return any(s in key for s in adapter_substrings)
class AdapterV2Linear(torch.nn.Module):
def __init__(self, in_features: int, out_features: int, **kwargs) -> None:
super().__init__()
self.linear = torch.nn.Linear(in_features, out_features, **kwargs)
self.adapter_bias = torch.nn.Parameter(torch.zeros(out_features), requires_grad=False)
self.adapter_scale = torch.nn.Parameter(torch.ones(out_features), requires_grad=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.adapter_scale * (self.linear(x) + self.adapter_bias)
def reset_parameters(self) -> None:
nn.init.zeros_(self.adapter_bias)
nn.init.ones_(self.adapter_scale)
class GPT(BaseModel):
def __init__(self, config: Config) -> None:
# Skip the parent class __init__ altogether and replace it to avoid useless allocations
nn.Module.__init__(self)
assert config.padded_vocab_size is not None
self.config = config
self.lm_head = AdapterV2Linear(config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias)
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
h=nn.ModuleList(Block(config, i) for i in range(config.n_layer)),
ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
)
)
self.max_seq_length = self.config.block_size
self.mask_cache: Optional[torch.Tensor] = None
@classmethod
def from_name(cls, name: str, **kwargs: Any) -> Self:
return cls(Config.from_name(name, **kwargs))
def _init_weights(self, module: nn.Module) -> None:
"""Meant to be used with `gpt.apply(gpt._init_weights)`. Unused method left for completeness."""
super()._init_weights(module)
if isinstance(module, AdapterV2Linear):
module.reset_parameters()
def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
"""For compatibility with base checkpoints."""
mapping = {"lm_head.weight": "lm_head.linear.weight"}
state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
class Block(BaseBlock):
"""The implementation is identical to `lit_gpt.model.Block` with the exception that
we replace the attention layer where adaption is implemented."""
def __init__(self, config: Config, block_idx: int) -> None:
# Skip the parent class __init__ altogether and replace it to avoid useless allocations
nn.Module.__init__(self)
self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps)
self.attn = CausalSelfAttention(config, block_idx)
if not config.shared_attention_norm:
self.norm_2 = config.norm_class(config.n_embd, eps=config.norm_eps)
self.mlp = config.mlp_class(config)
self.config = config
class CausalSelfAttention(BaseCausalSelfAttention):
"""A modification of `lit_gpt.adapter.CausalSelfAttention` that uses the Adapter V2 Linear class"""
def __init__(self, config: Config, block_idx: int) -> None:
# Skip the parent class __init__ altogether and replace it to avoid useless allocations
nn.Module.__init__(self)
shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
# key, query, value projections for all heads, but in a batch
self.attn = AdapterV2Linear(in_features=config.n_embd, out_features=shape, bias=config.bias)
# output projection
self.proj = AdapterV2Linear(config.n_embd, config.n_embd, bias=config.bias)
# disabled by default
self.kv_cache: Optional[KVCache] = None
if block_idx >= config.adapter_start_layer:
# adapter embedding layer
self.adapter_wte = nn.Embedding(config.adapter_prompt_length, config.n_embd)
# gate for adaption
self.gating_factor = torch.nn.Parameter(torch.zeros(1, 1, config.n_head, 1))
# kv cache for inference
self.adapter_kv_cache: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
self.block_idx = block_idx
self.config = config
def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
"""For compatibility with base checkpoints."""
mapping = {
"attn.weight": "attn.linear.weight",
"attn.bias": "attn.linear.bias",
"proj.weight": "proj.linear.weight",
"proj.bias": "proj.linear.bias",
}
state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
# For compatibility with older checkpoints
if (key := prefix + "gating_factor") in state_dict and state_dict[key].size(1) == self.config.n_head:
state_dict[key] = state_dict[key].permute(0, 2, 1, 3)
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
class GptNeoxMLP(lit_gpt.model.GptNeoxMLP):
def __init__(self, config: Config) -> None:
nn.Module.__init__(self)
self.fc = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias)
self.config = config
def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
"""For compatibility with base checkpoints."""
mapping = {
"fc.weight": "fc.linear.weight",
"fc.bias": "fc.linear.bias",
"proj.weight": "proj.linear.weight",
"proj.bias": "proj.linear.bias",
}
state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
class LLaMAMLP(lit_gpt.model.LLaMAMLP):
def __init__(self, config: Config) -> None:
nn.Module.__init__(self)
self.fc_1 = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
self.fc_2 = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias)
def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
"""For compatibility with base checkpoints."""
mapping = {
"fc_1.weight": "fc_1.linear.weight",
"fc_1.bias": "fc_1.linear.bias",
"fc_2.weight": "fc_2.linear.weight",
"fc_2.bias": "fc_2.linear.bias",
"proj.weight": "proj.linear.weight",
"proj.bias": "proj.linear.bias",
}
state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
def mark_only_adapter_v2_as_trainable(model: GPT) -> None:
"""Sets requires_grad=False for all non-adapter weights"""
for name, param in model.named_parameters():
param.requires_grad = adapter_filter(name, param)
|