File size: 7,660 Bytes
445d3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Very loosely inspired by indexed_dataset in Fairseq, Megatron
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/data/indexed_dataset.py


import os
import random
import struct

import numpy as np
import torch
from torch.utils.data import IterableDataset, get_worker_info

dtypes = {1: np.uint8, 2: np.int8, 3: np.int16, 4: np.int32, 5: np.int64, 6: np.float32, 7: np.float64, 8: np.uint16}


def code(dtype):
    for k in dtypes:
        if dtypes[k] == dtype:
            return k
    raise ValueError(dtype)


HDR_MAGIC = b"LITPKDS"
HDR_SIZE = 24  # bytes


class PackedDataset(IterableDataset):
    def __init__(
        self, filenames, n_chunks, block_size, seed=12345, shuffle=True, wrap=False, num_processes=1, process_rank=0
    ):
        self._filenames = filenames
        self._n_chunks = n_chunks
        self._block_size = block_size
        self._seed = seed
        self._shuffle = shuffle
        self._wrap = wrap
        self._num_processes = num_processes
        self._process_rank = process_rank

    def __iter__(self):
        worker_info = get_worker_info()
        num_workers = worker_info.num_workers if worker_info is not None else 1
        worker_id = worker_info.id if worker_info is not None else 0
        num_shards = num_workers * self._num_processes
        shard_id = self._process_rank * num_workers + worker_id

        max_num_files = len(self._filenames) // num_shards * num_shards
        filenames = self._filenames[shard_id:max_num_files:num_shards]

        return PackedDatasetIterator(
            filenames=filenames,
            n_chunks=self._n_chunks,
            block_size=self._block_size,
            seed=self._seed,
            shuffle=self._shuffle,
            wrap=self._wrap,
        )


class PackedDatasetBuilder(object):
    def __init__(self, outdir, prefix, chunk_size, sep_token, dtype="auto", vocab_size=None):
        if dtype == "auto":
            if vocab_size is None:
                raise ValueError("vocab_size cannot be None when dtype='auto'")
            if vocab_size is not None and vocab_size < 65500:
                self._dtype = np.uint16
            else:
                self._dtype = np.int32
        else:
            self._dtype = dtype
        self._counter = 0
        self._chunk_size = chunk_size
        self._outdir = outdir
        self._prefix = prefix
        self._sep_token = sep_token
        self._arr = np.zeros(self._chunk_size, dtype=self._dtype)
        self._arr.fill(self._sep_token)
        self._idx = 0
        self._version = 1
        self._filenames = []

    def _write_chunk(self):
        filename = f"{self._prefix}_{self._counter:010d}.bin"
        filename = os.path.join(self._outdir, filename)

        with open(filename, "wb") as f:
            f.write(HDR_MAGIC)
            f.write(struct.pack("<Q", self._version))
            f.write(struct.pack("<B", code(self._dtype)))
            f.write(struct.pack("<Q", self._chunk_size))
            f.write(self._arr.tobytes(order="C"))

        self._filenames.append(filename)
        self._counter += 1
        self._arr.fill(self._sep_token)
        self._idx = 0

    @property
    def dtype(self):
        return self._dtype

    @property
    def filenames(self):
        return self._filenames.copy()

    def add_array(self, arr):
        while self._idx + arr.shape[0] > self._chunk_size:
            part_len = self._chunk_size - self._idx
            self._arr[self._idx : self._idx + part_len] = arr[:part_len]
            self._write_chunk()
            arr = arr[part_len:]

        arr_len = arr.shape[0]
        self._arr[self._idx : self._idx + arr_len] = arr
        self._idx += arr_len

    def write_reminder(self):
        self._write_chunk()


class PackedDatasetIterator:
    def __init__(self, filenames, n_chunks, block_size, seed, shuffle, wrap):
        self._seed = seed
        self._shuffle = shuffle
        self._rng = np.random.default_rng(seed) if shuffle else None
        self._block_idxs = None

        self._wrap = wrap

        # TODO: instead of filenames, we could have a single text stream
        #       (or text file) with the sequence of all files to be
        #       fetched/loaded.
        self._filenames = filenames
        self._file_idx = 0

        self._n_chunks = n_chunks

        self._dtype = None
        self._block_size = block_size
        self._n_blocks = None

        self._mmaps = []
        self._buffers = []

        self._block_idxs = []
        self._curr_idx = 0

        self._load_n_chunks()

    def _read_header(self, path):
        with open(path, "rb") as f:
            magic = f.read(len(HDR_MAGIC))
            assert magic == HDR_MAGIC, "File doesn't match expected format."
            version = struct.unpack("<Q", f.read(8))
            assert version == (1,)
            (dtype_code,) = struct.unpack("<B", f.read(1))
            dtype = dtypes[dtype_code]
            (chunk_size,) = struct.unpack("<Q", f.read(8))
        return dtype, chunk_size

    def _close_mmaps(self):
        for mmap in self._mmaps:
            mmap._mmap.close()

    def _load_n_chunks(self):
        self._close_mmaps()
        self._mmaps = []
        self._buffers = []

        if self._n_chunks > len(self._filenames[self._file_idx :]):
            if not self._wrap:
                raise StopIteration
            self._file_idx = 0

        for i in range(self._n_chunks):
            filename = self._filenames[self._file_idx + i]
            if self._dtype is None:
                self._dtype, self._chunk_size = self._read_header(filename)
                self._n_blocks = self._chunk_size // self._block_size
            # TODO: check header matches with previous files
            mmap = np.memmap(filename, mode="r", order="C", offset=HDR_SIZE)
            self._mmaps.append(mmap)
            self._buffers.append(memoryview(mmap))

        self._file_idx += self._n_chunks
        n_all_blocks = self._n_chunks * self._n_blocks

        self._block_idxs = self._rng.permutation(n_all_blocks) if self._shuffle else range(n_all_blocks)

        self._curr_idx = 0

    def __del__(self):
        self._close_mmaps()
        del self._mmaps
        del self._buffers

    def __iter__(self):
        return self

    def __next__(self):
        if self._curr_idx >= len(self._block_idxs):
            self._load_n_chunks()
            # TODO: trigger fetching next next n_chunks if remote
        block_idx = self._block_idxs[self._curr_idx]
        chunk_id = block_idx // self._n_blocks
        buffer = self._buffers[chunk_id]
        elem_id = (block_idx % self._n_blocks) * self._block_size
        offset = np.dtype(self._dtype).itemsize * elem_id
        arr = np.frombuffer(buffer, dtype=self._dtype, count=self._block_size, offset=offset)
        self._curr_idx += 1
        return torch.from_numpy(arr.astype(np.int64))


class CombinedDataset(IterableDataset):
    def __init__(self, datasets, seed, weights=None):
        self._seed = seed
        self._datasets = datasets
        self._weights = weights
        n_datasets = len(datasets)
        if weights is None:
            self._weights = [1 / n_datasets] * n_datasets

    def __iter__(self):
        return CombinedDatasetIterator(self._datasets, self._seed, self._weights)


class CombinedDatasetIterator:
    def __init__(self, datasets, seed, weights):
        self._datasets = [iter(el) for el in datasets]
        self._weights = weights
        self._rng = random.Random(seed)

    def __next__(self):
        (dataset,) = self._rng.choices(self._datasets, weights=self._weights, k=1)
        return next(dataset)