Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,856 Bytes
445d3d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 |
import shutil
import subprocess
import torch
import gradio as gr
from fastapi import FastAPI
import os
from PIL import Image
import tempfile
from decord import VideoReader, cpu
import uvicorn
from transformers import TextStreamer
import hashlib
import os
import sys
import time
import warnings
from pathlib import Path
from typing import Optional
from typing import Dict, List, Literal, Optional, Tuple
from lit_gpt.lora import GPT, Block, Config, lora_filter, mark_only_lora_as_trainable
import lightning as L
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from generate import generate as generate_
from lit_llama import Tokenizer, LLaMA, LLaMAConfig
from lit_llama.lora import lora
from lit_llama.utils import EmptyInitOnDevice
from lit_gpt.utils import lazy_load
from scripts.video_dataset.prepare_video_dataset_video_llava import generate_prompt_mlp
from options import option
import imageio
from tqdm import tqdm
from models.multimodal_encoder.builder import build_image_tower, build_video_tower
from models.multimodal_projector.builder import build_vision_projector
title_markdown = ("""<div class="embed_hidden" style="text-align: center;">
<h1>MotionLLM: Understanding Human Behaviors from Human Motions and Videos</h1>
<h3>
<a href="https://lhchen.top" target="_blank" rel="noopener noreferrer">Ling-Hao Chen</a><sup>π 1, 3</sup>,
<a href="https://shunlinlu.github.io" target="_blank" rel="noopener noreferrer">Shunlin Lu</a><sup>π 2, 3</sup>,
<br>
<a href="https://ailingzeng.sit" target="_blank" rel="noopener noreferrer">Ailing Zeng</a><sup>3</sup>,
<a href="https://haozhang534.github.io/" target="_blank" rel="noopener noreferrer">Hao Zhang</a><sup>3, 4</sup>,
<a href="https://wabyking.github.io/old.html" target="_blank" rel="noopener noreferrer">Benyou Wang</a><sup>2</sup>,
<a href="http://zhangruimao.site" target="_blank" rel="noopener noreferrer">Ruimao Zhang</a><sup>2</sup>,
<a href="https://leizhang.org" target="_blank" rel="noopener noreferrer">Lei Zhang</a><sup>π€ 3</sup>
</h3>
<h3><sup>π</sup><i>Co-first author. Listing order is random.</i>   <sup>π€</sup><i>Corresponding author.</i></h3>
<h3>
<sup>1</sup>THU  
<sup>2</sup>CUHK (SZ)  
<sup>3</sup>IDEA Research  
<sup>4</sup>HKUST
</h3>
</div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<img src="https://lhchen.top/MotionLLM/assets/img/highlight.png" alt="MotionLLM" style="width:60%; height: auto; align-items: center;">
</div>
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
tos_markdown = ("""
*We are now working to support the motion branch of the MotionLLM model.
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content.
It is forbidden to use the service to generate content that is illegal, harmful, violent, racist, or sexual
The usage of this service is subject to the IDEA License.
""")
learn_more_markdown = ("""
### License
License for Non-commercial Scientific Research Purposes
IDEA grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty free and limited license under IDEAβs copyright interests to reproduce, distribute, and create derivative works of the text, videos, codes solely for your non-commercial research purposes.
Any other use, in particular any use for commercial, pornographic, military, or surveillance, purposes is prohibited.
Text and visualization results are owned by International Digital Economy Academy (IDEA).
You also need to obey the original license of the dependency models/data used in this service.
""")
class LlavaMetaModel:
def __init__(self, config, pretrained_checkpoint):
super(LlavaMetaModel, self).__init__()
# import pdb; pdb.set_trace()
if hasattr(config, "mm_image_tower") or hasattr(config, "image_tower"):
self.image_tower = build_image_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config)
if hasattr(config, "mm_video_tower") or hasattr(config, "video_tower"):
self.video_tower = build_video_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config)
self.load_video_tower_pretrained(pretrained_checkpoint)
def get_image_tower(self):
image_tower = getattr(self, 'image_tower', None)
if type(image_tower) is list:
image_tower = image_tower[0]
return image_tower
def get_video_tower(self):
video_tower = getattr(self, 'video_tower', None)
if type(video_tower) is list:
video_tower = video_tower[0]
return video_tower
def get_all_tower(self, keys):
tower = {key: getattr(self, f'get_{key}_tower') for key in keys}
return tower
def load_video_tower_pretrained(self, pretrained_checkpoint):
self.mm_projector.load_state_dict(pretrained_checkpoint, strict=True)
def initialize_image_modules(self, model_args, fsdp=None):
image_tower = model_args.image_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_image_tower = image_tower
image_tower = build_image_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.image_tower = [image_tower]
else:
self.image_tower = image_tower
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = image_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.mm_projector = build_vision_projector(self.config)
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
def initialize_video_modules(self, model_args, fsdp=None):
video_tower = model_args.video_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_video_tower = video_tower
video_tower = build_video_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.video_tower = [video_tower]
else:
self.video_tower = video_tower
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = video_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.mm_projector = build_vision_projector(self.config)
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
def encode_images(self, images):
image_features = self.get_image_tower()(images)
image_features = self.mm_projector(image_features)
return image_features
def encode_videos(self, videos):
# import pdb; pdb.set_trace()
# videos: torch.Size([1, 3, 8, 224, 224])
video_features = self.get_video_tower()(videos) # torch.Size([1, 2048, 1024])
video_features = self.mm_projector(video_features.float()) # torch.Size([1, 2048, 4096])
return video_features
def get_multimodal_embeddings(self, X_modalities):
Xs, keys= X_modalities
X_features = getattr(self, f'encode_{keys[0]}s')(Xs) # expand to get batchsize
return X_features
class Projection(nn.Module):
def __init__(self, ):
super().__init__()
self.linear_proj = nn.Linear(512, 4096)
def forward(self, x):
return self.linear_proj(x)
class ProjectionNN(nn.Module):
def __init__(self, ):
super().__init__()
self.proj = nn.Sequential(
nn.Linear(512, 4096),
nn.GELU(),
nn.Linear(4096, 4096)
)
def forward(self, x):
return self.proj(x)
class Conversation():
def __init__(self, output=None, input_prompt=None, prompt=None):
if output is None:
self.messages = []
else:
self.messages = []
self.append_message(prompt, input_prompt, output)
def append_message(self, output, input_prompt, prompt, show_images):
# print(output)
# print(input_prompt)
# print(prompt)
# print(show_images)
self.messages.append((output, input_prompt, prompt, show_images))
def to_gradio_chatbot(self, show_images=None, output_text=None):
# return a list
if show_images is None:
show_images = self.messages[-1][3]
output_text = self.messages[-1][0]
return [
[show_images, output_text]
]
def get_info(self):
return self.messages[-1][0], self.messages[-1][1]
class ConversationBuffer():
def __init__(self, input_text):
self.buffer_ = []
self.buffer.append(input_text)
def init_conv():
conv = Conversation()
return conv
def get_processor(X, config, device, pretrained_checkpoint_tower, model_path = 'LanguageBind/MotionLLM-7B'):
mm_backbone_mlp_model = LlavaMetaModel(config, pretrained_checkpoint_tower)
processor = {}
if 'Image' in X:
image_tower = mm_backbone_mlp_model.get_image_tower() # LanguageBindImageTower()
if not image_tower.is_loaded:
image_tower.load_model()
image_tower.to(device=device, dtype=torch.float16)
image_processor = image_tower.image_processor
processor['image'] = image_processor
if 'Video' in X:
video_tower = mm_backbone_mlp_model.get_video_tower()
if not video_tower.is_loaded:
video_tower.load_model()
video_tower.to(device=device, dtype=torch.float16)
video_processor = video_tower.video_processor
processor['video'] = video_processor
return mm_backbone_mlp_model, processor
def motionllm(
args,
input_video_path: str,
text_en_in: str,
quantize: Optional[str] = None,
dtype: str = "float32",
max_new_tokens: int = 200,
top_k: int = 200,
temperature: float = 0.8,
accelerator: str = "auto",):
video_tensor = video_processor(input_video_path, return_tensors='pt')['pixel_values']
if type(video_tensor) is list:
tensor = [video.to('cuda', dtype=torch.float16) for video in video_tensor]
else:
tensor = video_tensor.to('cuda', dtype=torch.float16) # (1,3,8,224,224)
X_modalities = [tensor,['video']]
video_feature = mm_backbone_mlp_model.get_multimodal_embeddings(X_modalities)
prompt = text_en_in
input_prompt = prompt
sample = {"instruction": prompt, "input": input_video_path}
prefix = generate_prompt_mlp(sample)
pre = torch.cat((tokenizer.encode(prefix.split('INPUT_VIDEO: ')[0] + "\n", bos=True, eos=False, device=model.device).view(1, -1), tokenizer.encode("INPUT_VIDEO: ", bos=False, eos=False, device=model.device).view(1, -1)), dim=1)
prompt = (pre, ". ASSISTANT: ")
encoded = (prompt[0], video_feature[0], tokenizer.encode(prompt[1], bos=False, eos=False, device=model.device).view(1, -1))
t0 = time.perf_counter()
output_seq = generate_(
model,
idx=encoded,
max_seq_length=4096,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
eos_id=tokenizer.eos_id,
tokenizer = tokenizer,
)
outputfull = tokenizer.decode(output_seq)
output = outputfull.split("ASSISTANT:")[-1].strip()
print("================================")
print(output)
print("================================")
return output, input_prompt, prompt
def save_image_to_local(image):
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.jpg')
image = Image.open(image)
image.save(filename)
# print(filename)
return filename
def save_video_to_local(video_path):
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4')
shutil.copyfile(video_path, filename)
return filename
def generate(image1, video, textbox_in, first_run, state, images_tensor):
flag = 1
image1 = image1 if image1 else "none"
video = video if video else "none"
if type(state) is not Conversation:
state = init_conv()
images_tensor = [[], []]
first_run = False if len(state.messages) > 0 else True
text_en_in = textbox_in.replace("picture", "image")
output, input_prompt, prompt = motionllm(args, video, text_en_in)
text_en_out = output
textbox_out = text_en_out
show_images = ""
if os.path.exists(image1):
filename = save_image_to_local(image1)
show_images += f'<img src="./file={filename}" style="display: inline-block;width: 250px;max-height: 400px;">'
if os.path.exists(video):
filename = save_video_to_local(video)
show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={filename}"></video>'
show_images = textbox_in + "\n" + show_images
state.append_message(output, input_prompt, prompt, show_images)
torch.cuda.empty_cache()
return (state, state.to_gradio_chatbot(show_images, output), False, gr.update(value=None, interactive=True), images_tensor, gr.update(value=image1 if os.path.exists(image1) else None, interactive=True), gr.update(value=video if os.path.exists(video) else None, interactive=True))
def regenerate(state):
if len(state.messages) > 0:
tobot = state.to_gradio_chatbot()
tobot[-1][1] = None
textbox = state.messages[-1][1]
state.messages.pop(-1)
return state, tobot, False, textbox
return (state, [], True)
def clear_history(state):
state = init_conv()
try:
tgt = state.to_gradio_chatbot()
except:
tgt = [None, None]
return (gr.update(value=None, interactive=True),
gr.update(value=None, interactive=True),\
gr.update(value=None, interactive=True),\
True, state, tgt, [[], []])
def get_md5(file_path):
hash_md5 = hashlib.md5()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def logging_up(video, state):
try:
state.get_info()
except:
return False
action = "upvote"
# Get the current time
current_time = str(time.time())
# Create an md5 object
hash_object = hashlib.md5(current_time.encode())
# Get the hexadecimal representation of the hash
md5_hash = get_md5(video) + "-" + hash_object.hexdigest()
command = f"cp {video} ./feedback/{action}/mp4/{md5_hash}.mp4"
os.system(command)
with open (f"./feedback/{action}/txt/{md5_hash}.txt", "w") as f:
out, prp = state.get_info()
f.write(f"==========\nPrompt: {prp}\n==========\nOutput: {out}==========\n")
return True
def logging_down(video, state):
try:
state.get_info()
except:
return False
action = "downvote"
# Get the current time
current_time = str(time.time())
# Create an md5 object
hash_object = hashlib.md5(current_time.encode())
# Get the hexadecimal representation of the hash
md5_hash = get_md5(video) + "-" + hash_object.hexdigest()
command = f"cp {video} ./feedback/{action}/mp4/{md5_hash}.mp4"
os.system(command)
with open (f"./feedback/{action}/txt/{md5_hash}.txt", "w") as f:
out, prp = state.get_info()
f.write(f"==========\nPrompt: {prp}\n==========\nOutput: {out}==========\n")
return True
torch.set_float32_matmul_precision("high")
warnings.filterwarnings('ignore')
args = option.get_args_parser()
conv_mode = "llava_v1"
model_path = 'LanguageBind/Video-LLaVA-7B'
device = 'cuda'
load_8bit = False
load_4bit = True
dtype = torch.float16
if not os.path.exists("temp"):
os.makedirs("temp")
lora_path = Path(args.lora_path)
pretrained_llm_path = Path(f"./checkpoints/vicuna-7b-v1.5/lit_model.pth")
tokenizer_llm_path = Path("./checkpoints/vicuna-7b-v1.5/tokenizer.model")
# assert lora_path.is_file()
assert pretrained_llm_path.is_file()
assert tokenizer_llm_path.is_file()
accelerator = "auto"
fabric = L.Fabric(accelerator=accelerator, devices=1)
dtype = "float32"
dt = getattr(torch, dtype, None)
if not isinstance(dt, torch.dtype):
raise ValueError(f"{dtype} is not a valid dtype.")
dtype = dt
quantize = None
t0 = time.time()
with EmptyInitOnDevice(
device=fabric.device, dtype=dtype, quantization_mode=quantize
), lora(r=args.lora_r, alpha=args.lora_alpha, dropout=args.lora_dropout, enabled=True):
checkpoint_dir = Path("checkpoints/vicuna-7b-v1.5")
lora_query = True
lora_key = False
lora_value = True
lora_projection = False
lora_mlp = False
lora_head = False
config = Config.from_name(
name=checkpoint_dir.name,
r=args.lora_r,
alpha=args.lora_alpha,
dropout=args.lora_dropout,
to_query=lora_query,
to_key=lora_key,
to_value=lora_value,
to_projection=lora_projection,
to_mlp=lora_mlp,
to_head=lora_head,
)
model = GPT(config).bfloat16()
mlp_path = args.mlp_path
pretrained_checkpoint_mlp = torch.load(mlp_path)
X = ['Video']
mm_backbone_mlp_model, processor = get_processor(X, args, 'cuda', pretrained_checkpoint_mlp, model_path = 'LanguageBind/Video-LLaVA-7B')
video_processor = processor['video']
linear_proj = mm_backbone_mlp_model.mm_projector
# 1. Load the pretrained weights
pretrained_llm_checkpoint = lazy_load(pretrained_llm_path)
# 2. Load the fine-tuned LoRA weights
lora_checkpoint = lazy_load(lora_path)
# 3. merge the two checkpoints
model_state_dict = {**pretrained_llm_checkpoint, **lora_checkpoint}
model.load_state_dict(model_state_dict, strict=True)
print('Load llm base model from', pretrained_llm_path)
print('Load lora model from', lora_path)
# load mlp again, to en sure, not neccessary actually
linear_proj.load_state_dict(pretrained_checkpoint_mlp)
linear_proj = linear_proj.cuda()
print('Load mlp model again from', mlp_path)
print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr)
model.eval()
model = fabric.setup_module(model)
linear_proj.eval()
tokenizer = Tokenizer(tokenizer_llm_path)
print('Load tokenizer from', tokenizer_llm_path)
print(torch.cuda.memory_allocated())
print(torch.cuda.max_memory_allocated())
app = FastAPI()
textbox = gr.Textbox(
show_label=False, placeholder="Enter text and press ENTER", container=False
)
with gr.Blocks(title='MotionLLM', theme=gr.themes.Default(), css=block_css) as demo:
gr.Markdown(title_markdown)
state = gr.State()
buffer_ = gr.State()
first_run = gr.State()
images_tensor = gr.State()
with gr.Row():
with gr.Column(scale=3):
image1 = gr.State()
video = gr.Video(label="Input Video")
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(
examples=[
[
f"{cur_dir}/examples/Play_Electric_guitar_16_clip1.mp4",
"why is the girl so happy",
],
[
f"{cur_dir}/examples/guoyoucai.mov",
"what is the feeling of him",
],
[
f"{cur_dir}/examples/sprint_run_18_clip1.mp4",
"Why is the man running so fast?",
],
[
f"{cur_dir}/examples/lift_weight.mp4",
"Assume you are a fitness coach, refer to the video of the professional athlete, please analyze specific action essentials in steps and give detailed instruction.",
],
[
f"{cur_dir}/examples/Shaolin_Kung_Fu_Wushu_Selfdefense_Sword_Form_Session_22_clip3.mp4",
"wow, can you teach me the motion, step by step in detail",
],
[
f"{cur_dir}/examples/mabaoguo.mp4",
"why is the video funny?",
],
[
f"{cur_dir}/examples/COBRA_PUSH_UPS_clip2.mp4",
"describe the body movement of the woman",
],
[
f"{cur_dir}/examples/sample_demo_1.mp4",
"Why is this video interesting?",
],
],
inputs=[video, textbox],
)
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="MotionLLM", bubble_full_width=True).style(height=875)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(
value="Send", variant="primary", interactive=True
)
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="π Upvote", interactive=True)
downvote_btn = gr.Button(value="π Downvote", interactive=True)
flag_btn = gr.Button(value="β οΈ Flag", interactive=True)
# stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=True)
clear_btn = gr.Button(value="ποΈ Clear history", interactive=True)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
tmp = gr.State()
upvote_btn.click(logging_up, [video, state], [tmp])
downvote_btn.click(logging_down, [video, state], [tmp])
submit_btn.click(generate, [image1, video, textbox, first_run, state, images_tensor],
[state, chatbot, first_run, textbox, images_tensor, image1, video])
regenerate_btn.click(regenerate, [state], [state, chatbot, first_run, textbox]).then(
generate, [image1, video, textbox, first_run, state, images_tensor], [state, chatbot, first_run, textbox, images_tensor, image1, video])
clear_btn.click(clear_history, [state],
[image1, video, textbox, first_run, state, chatbot, images_tensor])
app = gr.mount_gradio_app(app, demo, path="/")
uvicorn.run(app, host="0.0.0.0", port=6657) |