File size: 11,122 Bytes
445d3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
from contextlib import contextmanager
import warnings
import math

import torch

# configuration for bitsandbytes before import
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
warnings.filterwarnings(
    "ignore", 
    message="MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization"
)
warnings.filterwarnings(
    "ignore", 
    message="MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization"
)
warnings.filterwarnings(
    "ignore", 
    message="The installed version of bitsandbytes was compiled without GPU support. 8-bit optimizers and GPU quantization are unavailable."
)

try:
    import bitsandbytes as bnb  # noqa: E402
except:
    bnb = None

if bnb is not None:
    class Linear8bitLt(bnb.nn.Linear8bitLt):
        """Wraps `bnb.nn.Linear8bitLt` and enables instantiation directly on the device and
        re-quantizaton when loading the state dict.


        This should only be used for inference. For training, use `bnb.nn.Linear8bitLt` directly.
        """
        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs, has_fp16_weights=False, threshold=6.0)
            # We quantize the initial weight here so we don't end up filling the device
            # memory with float32 weights which could lead to OOM.
            self._quantize_weight(self.weight.data)

        def _load_from_state_dict(self, local_state_dict, *args, **kwargs):
            # There is only one key that ends with `*.weight`, the other one is the bias
            weight_key = next((name for name in local_state_dict.keys() if name.endswith("weight")), None)
            if weight_key is None:
                return

            # Load the weight from the state dict and re-quantize it
            weight = local_state_dict.pop(weight_key)
            self._quantize_weight(weight)

            # If there is a bias, let nn.Module load it
            if local_state_dict:
                super()._load_from_state_dict(local_state_dict, *args, **kwargs)

        def _quantize_weight(self, weight: torch.Tensor) -> None:
            # This code is taken and adapted from `bnb.nn.Int8Params.cuda()`
            B = weight.contiguous().half().cuda()
            CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
            del CBt
            del SCBt
            self.weight.data = CB
            setattr(self.weight, "CB", CB)
            setattr(self.weight, "SCB", SCB)


# for correctness but with terrible perf
class ColBlockQuantizedLinear(torch.nn.Module):
    def __init__(self, in_features, out_features, bias: bool, *, bits, tile_cols):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.tile_cols = tile_cols if tile_cols != -1 else self.in_features
        self.bits = bits
        self.entries_per_byte = 8 // bits
        assert self.entries_per_byte > 0 and self.entries_per_byte * self.bits == 8
        assert in_features % self.entries_per_byte == 0
        self.register_buffer("quant_weight", torch.empty((self.out_features, self.in_features // self.entries_per_byte), dtype=torch.uint8))
        self.register_buffer("scales", torch.empty((self.out_features, (self.in_features + self.tile_cols - 1) // self.tile_cols)))
        self.register_buffer("zeros", torch.empty_like(self.scales))
        assert isinstance(bias, bool)
        if bias:
            self.register_buffer("bias", torch.empty((self.out_features,)))
        else:
            self.register_buffer("bias", None)

    def pack_weight(self, weight):
        weight = weight.to(device=self.quant_weight.device, copy=True)
        for j in range(self.scales.size(1)):
            weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] /= self.scales[: , j: j+1]
            weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] += self.zeros[: , j: j+1]
        weight = weight.clamp_(min=0, max=2 ** self.bits - 1).to(dtype=torch.uint8)
        self.quant_weight.zero_()
        for nr in range(self.entries_per_byte):
            self.quant_weight += weight[:, nr::self.entries_per_byte] << (nr * self.bits)

    def get_weight(self, dtype=torch.float):
        weight = torch.empty((self.out_features, self.in_features),  device=self.quant_weight.device, dtype=dtype)
        mask = (1<<self.bits) - 1
        for nr in range(self.entries_per_byte):
            weight[:, nr::self.entries_per_byte] = ((self.quant_weight >> (nr * self.bits)) & mask).float()
        self.quant_weight.to(dtype)
        for j in range(self.scales.size(1)):
            weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] -= self.zeros[: , j: j+1]
            weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] *= self.scales[: , j: j+1]
        return weight

    def forward(self, inp):
        weight = self.get_weight(dtype=inp.dtype)
        return torch.nn.functional.linear(inp, weight, self.bias)




class GPTQQuantizer:
    # The algorithm and code has been taken from  https://github.com/IST-DASLab/gptq/
    # E. Frantar et al GPTQ: Accurate Post-training Compression for GPT, arXiv:2210.17323
    # portions copyright by the authors licensed under the Apache License 2.0
    # All errors are our own.

    def __init__(self, linear_module, *, bits, perchannel=True, sym=False, blocksize=128, percdamp=.01, groupsize=-1, actorder=False):
        assert isinstance(linear_module, torch.nn.Linear)

        self.linear_module = linear_module
        self.dev = self.linear_module.weight.device
        self.rows = linear_module.weight.shape[0]
        self.columns = linear_module.weight.shape[1]
        self.H = torch.zeros((self.columns, self.columns), device=self.dev)
        self.nsamples = 0
        self.bits = bits
        self.maxq = 2 ** bits - 1
        self.perchannel = perchannel
        self.sym = sym
        self.blocksize = blocksize
        self.percdamp = percdamp
        self.groupsize = groupsize
        self.actorder = actorder
        self.tile_cols = self.columns if groupsize == -1 else groupsize
        self.scales = torch.zeros((self.rows, (self.columns + self.tile_cols - 1) // self.tile_cols), dtype=self.linear_module.weight.dtype, device = self.dev)
        self.zeros = torch.zeros_like(self.scales)
        assert not (self.actorder and self.groupsize != -1), "The permutation trick does not work for grouped quantization"

    @staticmethod
    def quantize_weight(x, scale, zero, maxq):
        q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
        x_rec = scale * (q - zero)
        return x_rec

    def find_params_weight(self, x):
        dev = x.device

        shape = x.shape
        if self.perchannel:
            x = x.flatten(1)
        else:
            x = x.flatten().unsqueeze(0)

        tmp = torch.zeros(x.shape[0], device=dev)
        xmin = torch.minimum(x.min(1)[0], tmp)
        xmax = torch.maximum(x.max(1)[0], tmp)

        if self.sym:
            xmax = torch.maximum(torch.abs(xmin), xmax)
            tmp = xmin < 0
            if torch.any(tmp):
                xmin[tmp] = -xmax[tmp]
        tmp = (xmin == 0) & (xmax == 0)
        xmin[tmp] = -1
        xmax[tmp] = +1

        scale = (xmax - xmin) / self.maxq
        if self.sym:
            zero = torch.full_like(scale, (self.maxq + 1) / 2)
        else:
            zero = torch.round(-xmin / scale)

        if not self.perchannel:
            tmp = shape[0]
            scale = scale.repeat(tmp)
            zero = zero.repeat(tmp)

        shape = [-1] + [1] * (len(shape) - 1)
        scale = scale.reshape(shape)
        zero = zero.reshape(shape)
        return scale, zero

    def collect_input_stats(self, _1, inp, _2):
        inp = inp[0].detach()
        self.last_inp = inp
        if len(inp.shape) == 2:
            inp = inp.unsqueeze(0)
        tmp = inp.shape[0]
        if len(inp.shape) == 3:
            inp = inp.reshape((-1, inp.shape[-1]))
        inp = inp.t()
        self.H *= self.nsamples / (self.nsamples + tmp)
        self.nsamples += tmp
        # inp = inp.float()
        inp = math.sqrt(2 / self.nsamples) * inp.float()
        # self.H += 2 / self.nsamples * inp.matmul(inp.t())
        self.H += inp.matmul(inp.t())

    def quantize(self):
        W = self.linear_module.weight.detach().to(dtype=torch.float, copy=True)

        scale, zero = self.find_params_weight(W)
        self.scales[:] = scale
        self.zeros[:] = zero

        H = self.H
        del self.H
        dead = torch.diag(H) == 0
        H[dead, dead] = 1
        W[:, dead] = 0
        if self.actorder:
            perm = torch.argsort(torch.diag(H), descending=True)
            W = W[:, perm]
            H = H[perm][:, perm]

        Losses = torch.zeros_like(W)
        Q = torch.zeros_like(W)

        damp = self.percdamp * torch.mean(torch.diag(H))
        diag = torch.arange(self.columns, device=self.dev)
        H[diag, diag] += damp
        H = torch.linalg.cholesky(H)
        H = torch.cholesky_inverse(H)
        H = torch.linalg.cholesky(H, upper=True)
        Hinv = H

        for i1 in range(0, self.columns, self.blocksize):
            i2 = min(i1 + self.blocksize, self.columns)
            count = i2 - i1

            W1 = W[:, i1:i2].clone()
            Q1 = torch.zeros_like(W1)
            Err1 = torch.zeros_like(W1)
            Losses1 = torch.zeros_like(W1)
            Hinv1 = Hinv[i1:i2, i1:i2]

            for i in range(count):
                w = W1[:, i]
                d = Hinv1[i, i]

                if self.groupsize != -1:
                    if (i1 + i) % self.groupsize == 0:
                        scale, zero = self.find_params_weight(W[:, (i1 + i):(i1 + i + self.groupsize)])
                        self.scales[:, (i1 + i) // self.groupsize] = scale
                        self.zeros[:, (i1 + i) // self.groupsize] = zeros

                q = self.quantize_weight(
                    w.unsqueeze(1), scale, zero, self.maxq
                )
                q = q.squeeze(1)
                assert q.dim() == 1
                Q1[:, i] = q
                Losses1[:, i] = (w - q) ** 2 / d ** 2

                err1 = (w - q) / d
                W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
                Err1[:, i] = err1

            Q[:, i1:i2] = Q1
            Losses[:, i1:i2] = Losses1 / 2

            W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])

        if self.actorder:
            invperm = torch.argsort(perm)
            Q = Q[:, invperm]

        weight = Q.reshape(self.linear_module.weight.shape).to(self.linear_module.weight.data.dtype)
        error = torch.sum(Losses).item()

        q_module = ColBlockQuantizedLinear(self.linear_module.in_features, self.linear_module.out_features, self.linear_module.bias is not None,
                                           bits=self.bits, tile_cols=self.groupsize).to(self.dev)
        q_module.scales = self.scales
        q_module.zeros = self.zeros
        q_module.pack_weight(weight)
        q_module.bias = self.linear_module.bias
        return q_module, error