Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,122 Bytes
445d3d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import os
from contextlib import contextmanager
import warnings
import math
import torch
# configuration for bitsandbytes before import
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
warnings.filterwarnings(
"ignore",
message="MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization"
)
warnings.filterwarnings(
"ignore",
message="MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization"
)
warnings.filterwarnings(
"ignore",
message="The installed version of bitsandbytes was compiled without GPU support. 8-bit optimizers and GPU quantization are unavailable."
)
try:
import bitsandbytes as bnb # noqa: E402
except:
bnb = None
if bnb is not None:
class Linear8bitLt(bnb.nn.Linear8bitLt):
"""Wraps `bnb.nn.Linear8bitLt` and enables instantiation directly on the device and
re-quantizaton when loading the state dict.
This should only be used for inference. For training, use `bnb.nn.Linear8bitLt` directly.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs, has_fp16_weights=False, threshold=6.0)
# We quantize the initial weight here so we don't end up filling the device
# memory with float32 weights which could lead to OOM.
self._quantize_weight(self.weight.data)
def _load_from_state_dict(self, local_state_dict, *args, **kwargs):
# There is only one key that ends with `*.weight`, the other one is the bias
weight_key = next((name for name in local_state_dict.keys() if name.endswith("weight")), None)
if weight_key is None:
return
# Load the weight from the state dict and re-quantize it
weight = local_state_dict.pop(weight_key)
self._quantize_weight(weight)
# If there is a bias, let nn.Module load it
if local_state_dict:
super()._load_from_state_dict(local_state_dict, *args, **kwargs)
def _quantize_weight(self, weight: torch.Tensor) -> None:
# This code is taken and adapted from `bnb.nn.Int8Params.cuda()`
B = weight.contiguous().half().cuda()
CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
del CBt
del SCBt
self.weight.data = CB
setattr(self.weight, "CB", CB)
setattr(self.weight, "SCB", SCB)
# for correctness but with terrible perf
class ColBlockQuantizedLinear(torch.nn.Module):
def __init__(self, in_features, out_features, bias: bool, *, bits, tile_cols):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.tile_cols = tile_cols if tile_cols != -1 else self.in_features
self.bits = bits
self.entries_per_byte = 8 // bits
assert self.entries_per_byte > 0 and self.entries_per_byte * self.bits == 8
assert in_features % self.entries_per_byte == 0
self.register_buffer("quant_weight", torch.empty((self.out_features, self.in_features // self.entries_per_byte), dtype=torch.uint8))
self.register_buffer("scales", torch.empty((self.out_features, (self.in_features + self.tile_cols - 1) // self.tile_cols)))
self.register_buffer("zeros", torch.empty_like(self.scales))
assert isinstance(bias, bool)
if bias:
self.register_buffer("bias", torch.empty((self.out_features,)))
else:
self.register_buffer("bias", None)
def pack_weight(self, weight):
weight = weight.to(device=self.quant_weight.device, copy=True)
for j in range(self.scales.size(1)):
weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] /= self.scales[: , j: j+1]
weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] += self.zeros[: , j: j+1]
weight = weight.clamp_(min=0, max=2 ** self.bits - 1).to(dtype=torch.uint8)
self.quant_weight.zero_()
for nr in range(self.entries_per_byte):
self.quant_weight += weight[:, nr::self.entries_per_byte] << (nr * self.bits)
def get_weight(self, dtype=torch.float):
weight = torch.empty((self.out_features, self.in_features), device=self.quant_weight.device, dtype=dtype)
mask = (1<<self.bits) - 1
for nr in range(self.entries_per_byte):
weight[:, nr::self.entries_per_byte] = ((self.quant_weight >> (nr * self.bits)) & mask).float()
self.quant_weight.to(dtype)
for j in range(self.scales.size(1)):
weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] -= self.zeros[: , j: j+1]
weight[:, j * self.tile_cols: (j + 1) * self.tile_cols] *= self.scales[: , j: j+1]
return weight
def forward(self, inp):
weight = self.get_weight(dtype=inp.dtype)
return torch.nn.functional.linear(inp, weight, self.bias)
class GPTQQuantizer:
# The algorithm and code has been taken from https://github.com/IST-DASLab/gptq/
# E. Frantar et al GPTQ: Accurate Post-training Compression for GPT, arXiv:2210.17323
# portions copyright by the authors licensed under the Apache License 2.0
# All errors are our own.
def __init__(self, linear_module, *, bits, perchannel=True, sym=False, blocksize=128, percdamp=.01, groupsize=-1, actorder=False):
assert isinstance(linear_module, torch.nn.Linear)
self.linear_module = linear_module
self.dev = self.linear_module.weight.device
self.rows = linear_module.weight.shape[0]
self.columns = linear_module.weight.shape[1]
self.H = torch.zeros((self.columns, self.columns), device=self.dev)
self.nsamples = 0
self.bits = bits
self.maxq = 2 ** bits - 1
self.perchannel = perchannel
self.sym = sym
self.blocksize = blocksize
self.percdamp = percdamp
self.groupsize = groupsize
self.actorder = actorder
self.tile_cols = self.columns if groupsize == -1 else groupsize
self.scales = torch.zeros((self.rows, (self.columns + self.tile_cols - 1) // self.tile_cols), dtype=self.linear_module.weight.dtype, device = self.dev)
self.zeros = torch.zeros_like(self.scales)
assert not (self.actorder and self.groupsize != -1), "The permutation trick does not work for grouped quantization"
@staticmethod
def quantize_weight(x, scale, zero, maxq):
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
x_rec = scale * (q - zero)
return x_rec
def find_params_weight(self, x):
dev = x.device
shape = x.shape
if self.perchannel:
x = x.flatten(1)
else:
x = x.flatten().unsqueeze(0)
tmp = torch.zeros(x.shape[0], device=dev)
xmin = torch.minimum(x.min(1)[0], tmp)
xmax = torch.maximum(x.max(1)[0], tmp)
if self.sym:
xmax = torch.maximum(torch.abs(xmin), xmax)
tmp = xmin < 0
if torch.any(tmp):
xmin[tmp] = -xmax[tmp]
tmp = (xmin == 0) & (xmax == 0)
xmin[tmp] = -1
xmax[tmp] = +1
scale = (xmax - xmin) / self.maxq
if self.sym:
zero = torch.full_like(scale, (self.maxq + 1) / 2)
else:
zero = torch.round(-xmin / scale)
if not self.perchannel:
tmp = shape[0]
scale = scale.repeat(tmp)
zero = zero.repeat(tmp)
shape = [-1] + [1] * (len(shape) - 1)
scale = scale.reshape(shape)
zero = zero.reshape(shape)
return scale, zero
def collect_input_stats(self, _1, inp, _2):
inp = inp[0].detach()
self.last_inp = inp
if len(inp.shape) == 2:
inp = inp.unsqueeze(0)
tmp = inp.shape[0]
if len(inp.shape) == 3:
inp = inp.reshape((-1, inp.shape[-1]))
inp = inp.t()
self.H *= self.nsamples / (self.nsamples + tmp)
self.nsamples += tmp
# inp = inp.float()
inp = math.sqrt(2 / self.nsamples) * inp.float()
# self.H += 2 / self.nsamples * inp.matmul(inp.t())
self.H += inp.matmul(inp.t())
def quantize(self):
W = self.linear_module.weight.detach().to(dtype=torch.float, copy=True)
scale, zero = self.find_params_weight(W)
self.scales[:] = scale
self.zeros[:] = zero
H = self.H
del self.H
dead = torch.diag(H) == 0
H[dead, dead] = 1
W[:, dead] = 0
if self.actorder:
perm = torch.argsort(torch.diag(H), descending=True)
W = W[:, perm]
H = H[perm][:, perm]
Losses = torch.zeros_like(W)
Q = torch.zeros_like(W)
damp = self.percdamp * torch.mean(torch.diag(H))
diag = torch.arange(self.columns, device=self.dev)
H[diag, diag] += damp
H = torch.linalg.cholesky(H)
H = torch.cholesky_inverse(H)
H = torch.linalg.cholesky(H, upper=True)
Hinv = H
for i1 in range(0, self.columns, self.blocksize):
i2 = min(i1 + self.blocksize, self.columns)
count = i2 - i1
W1 = W[:, i1:i2].clone()
Q1 = torch.zeros_like(W1)
Err1 = torch.zeros_like(W1)
Losses1 = torch.zeros_like(W1)
Hinv1 = Hinv[i1:i2, i1:i2]
for i in range(count):
w = W1[:, i]
d = Hinv1[i, i]
if self.groupsize != -1:
if (i1 + i) % self.groupsize == 0:
scale, zero = self.find_params_weight(W[:, (i1 + i):(i1 + i + self.groupsize)])
self.scales[:, (i1 + i) // self.groupsize] = scale
self.zeros[:, (i1 + i) // self.groupsize] = zeros
q = self.quantize_weight(
w.unsqueeze(1), scale, zero, self.maxq
)
q = q.squeeze(1)
assert q.dim() == 1
Q1[:, i] = q
Losses1[:, i] = (w - q) ** 2 / d ** 2
err1 = (w - q) / d
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
Err1[:, i] = err1
Q[:, i1:i2] = Q1
Losses[:, i1:i2] = Losses1 / 2
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])
if self.actorder:
invperm = torch.argsort(perm)
Q = Q[:, invperm]
weight = Q.reshape(self.linear_module.weight.shape).to(self.linear_module.weight.data.dtype)
error = torch.sum(Losses).item()
q_module = ColBlockQuantizedLinear(self.linear_module.in_features, self.linear_module.out_features, self.linear_module.bias is not None,
bits=self.bits, tile_cols=self.groupsize).to(self.dev)
q_module.scales = self.scales
q_module.zeros = self.zeros
q_module.pack_weight(weight)
q_module.bias = self.linear_module.bias
return q_module, error
|