Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,331 Bytes
445d3d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import sys
import time
import warnings
from pathlib import Path
from typing import Optional
import lightning as L
import torch
from lit_llama import LLaMA, Tokenizer
from lit_llama.utils import EmptyInitOnDevice, lazy_load
@torch.no_grad()
def generate(
model: torch.nn.Module,
idx: torch.Tensor,
max_new_tokens: int,
max_seq_length: int,
temperature: float = 1.0,
top_k: Optional[int] = None,
eos_id: Optional[int] = None,
tokenizer = None,
) -> torch.Tensor:
"""Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
The implementation of this function is modified from A. Karpathy's nanoGPT.
Args:
model: The model to use.
idx: Tensor of shape (T) with indices of the prompt sequence.
max_new_tokens: The number of new tokens to generate.
max_seq_length: The maximum sequence length allowed.
temperature: Scales the predicted logits by 1 / temperature
top_k: If specified, only sample among the tokens with the k highest probabilities
eos_id: If specified, stop generating any more token once the <eos> token is triggered
"""
# create an empty tensor of the expected final shape and fill in the current tokens
# import pdb; pdb.set_trace()
if type(idx) == tuple:
# import pdb; pdb.set_trace()
T = idx[0].shape[-1] + idx[2].shape[-1] + len(idx[1])
before_len = idx[0].shape[-1]
catted = torch.cat((idx[0], torch.zeros((1, len(idx[1]))).cuda(), idx[2]), dim=1).long()
idx = (catted, idx[1], before_len)
T_new = T + max_new_tokens
# import pdb; pdb.set_trace()
empty = torch.empty(T_new, dtype=idx[0].dtype, device=idx[0].device)
empty = torch.empty(T_new, dtype=idx[0].dtype, device=idx[0].device)
empty[:T] = idx[0]
idx = (empty, idx[1], [before_len])
# import pdb; pdb.set_trace()
else:
# import pdb; pdb.set_trace()
T = idx.size(0)
T_new = T + max_new_tokens
empty = torch.empty(T_new, dtype=idx.dtype, device=idx.device)
empty[:T] = idx
idx = empty
# generate max_new_tokens tokens
# import pdb; pdb.set_trace()
for t in range(T, T_new):
if type(idx) == tuple:
idx_cond = idx[0][:t]
tmp = idx_cond if T <= max_seq_length else idx_cond[-max_seq_length:]
# import pdb; pdb.set_trace()
idx_cond = (tmp.view(1, -1), idx[1].unsqueeze(0), idx[2])
else:
# ignore the not-filled-yet tokens
idx_cond = idx[:t]
# if the sequence context is growing too long we must crop it at max_seq_length
idx_cond = idx_cond if T <= max_seq_length else idx_cond[-max_seq_length:]
# forward
if type(idx) == tuple:
logits = model(idx_cond, maxlen=idx_cond[0].size(1))
else:
logits = model(idx_cond.view(1, -1))
logits = logits[0, -1] / temperature
# import pdb; pdb.set_trace()
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[[-1]]] = -float("Inf")
probs = torch.nn.functional.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
# concatenate the new generation
if type(idx) == tuple:
seq = idx[0]
seq[t] = idx_next
idx = (seq, idx[1], idx[2])
else:
idx[t] = idx_next
# if <eos> token is triggered, return the output (stop generation)
if idx_next == eos_id:
if type(idx) == tuple:
return idx[0][:t+1]
else:
return idx[:t + 1] # include the EOS token
if type(idx) == tuple:
return idx[0]
else:
return idx
def main(
prompt: str = "Hello, my name is",
*,
num_samples: int = 1,
max_new_tokens: int = 50,
top_k: int = 200,
temperature: float = 0.8,
checkpoint_path: Optional[Path] = None,
tokenizer_path: Optional[Path] = None,
model_size: str = "7B",
quantize: Optional[str] = None,
) -> None:
"""Generates text samples based on a pre-trained LLaMA model and tokenizer.
Args:
prompt: The prompt string to use for generating the samples.
num_samples: The number of text samples to generate.
max_new_tokens: The number of generation steps to take.
top_k: The number of top most probable tokens to consider in the sampling process.
temperature: A value controlling the randomness of the sampling process. Higher values result in more random
samples.
checkpoint_path: The checkpoint path to load.
tokenizer_path: The tokenizer path to load.
model_size: The model size to load.
quantize: Whether to quantize the model and using which method:
``"llm.int8"``: LLM.int8() mode,
``"gptq.int4"``: GPTQ 4-bit mode.
"""
if not checkpoint_path:
checkpoint_path = Path(f"./checkpoints/lit-llama/{model_size}/lit-llama.pth")
if not tokenizer_path:
tokenizer_path = Path("./checkpoints/lit-llama/tokenizer.model")
assert checkpoint_path.is_file(), checkpoint_path
assert tokenizer_path.is_file(), tokenizer_path
fabric = L.Fabric(accelerator="cuda", devices=1)
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
print("Loading model ...", file=sys.stderr)
t0 = time.time()
with EmptyInitOnDevice(
device=fabric.device, dtype=dtype, quantization_mode=quantize
):
model = LLaMA.from_name(model_size)
checkpoint = lazy_load(checkpoint_path)
model.load_state_dict(checkpoint)
print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr)
model.eval()
model = fabric.setup_module(model)
tokenizer = Tokenizer(tokenizer_path)
encoded_prompt = tokenizer.encode(prompt, bos=True, eos=False, device=fabric.device)
L.seed_everything(1234)
t0 = time.perf_counter()
for _ in range(num_samples):
y = generate(
model,
encoded_prompt,
max_new_tokens,
model.config.block_size, # type: ignore[union-attr,arg-type]
temperature=temperature,
top_k=top_k,
)
print(tokenizer.decode(y))
t = time.perf_counter() - t0
print(f"\n\nTime for inference: {t:.02f} sec total, {num_samples * max_new_tokens / t:.02f} tokens/sec", file=sys.stderr)
print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB", file=sys.stderr)
if __name__ == "__main__":
from jsonargparse import CLI
torch.set_float32_matmul_precision("high")
warnings.filterwarnings(
# Triggered internally at ../aten/src/ATen/EmptyTensor.cpp:31
"ignore",
message="ComplexHalf support is experimental and many operators don't support it yet"
)
warnings.filterwarnings(
# Triggered in bitsandbytes/autograd/_functions.py:298
"ignore",
message="MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization",
)
CLI(main)
|