Spaces:
Running
Running
v0.10.9
#31
by
DmitryRyumin
- opened
- app/event_handlers/calculate_practical_tasks.py +27 -77
- app/event_handlers/practical_subtasks.py +1 -8
- app/event_handlers/practical_task_sorted.py +1 -7
- app/utils.py +1 -1
- config.toml +1 -2
- practical_tasks_en.yaml +0 -1
- practical_tasks_ru.yaml +0 -1
app/event_handlers/calculate_practical_tasks.py
CHANGED
@@ -576,12 +576,8 @@ def event_handler_calculate_practical_task_blocks(
|
|
576 |
elif practical_subtasks.lower() == "professional skills":
|
577 |
df_professional_skills = read_csv_file(config_data.Links_PROFESSIONAL_SKILLS)
|
578 |
|
579 |
-
pt_scores_copy = pt_scores.iloc[:, 1:].copy()
|
580 |
-
|
581 |
-
preprocess_scores_df(pt_scores_copy, config_data.Dataframes_PT_SCORES[0][0])
|
582 |
-
|
583 |
b5._priority_skill_calculation(
|
584 |
-
df_files=
|
585 |
correlation_coefficients=df_professional_skills,
|
586 |
threshold=threshold_professional_skills,
|
587 |
out=False,
|
@@ -611,13 +607,13 @@ def event_handler_calculate_practical_task_blocks(
|
|
611 |
df_hidden = df_hidden.sort_values(
|
612 |
by=[dropdown_professional_skills], ascending=False
|
613 |
)
|
614 |
-
df_hidden.reset_index(inplace=True)
|
615 |
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
616 |
df_hidden = df_hidden.melt(
|
617 |
var_name="Professional Skill", value_name="Summary Score"
|
618 |
)
|
619 |
df_hidden = df_hidden.sort_values(by=["Summary Score"], ascending=False)
|
620 |
-
|
|
|
621 |
|
622 |
df_hidden.to_csv(config_data.Filenames_PT_SKILLS_SCORES)
|
623 |
|
@@ -666,83 +662,37 @@ def event_handler_calculate_practical_task_blocks(
|
|
666 |
elif (
|
667 |
practical_subtasks.lower() == "finding a suitable junior colleague"
|
668 |
or practical_subtasks.lower() == "finding a suitable senior colleague"
|
669 |
-
or practical_subtasks.lower()
|
670 |
-
== "finding a suitable colleague by personality types"
|
671 |
):
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
if (
|
677 |
-
practical_subtasks.lower()
|
678 |
-
!= "finding a suitable colleague by personality types"
|
679 |
-
):
|
680 |
-
df_correlation_coefficients = read_csv_file(
|
681 |
-
config_data.Links_FINDING_COLLEAGUE, ["ID"]
|
682 |
-
)
|
683 |
-
|
684 |
-
b5._colleague_ranking(
|
685 |
-
df_files=pt_scores_copy,
|
686 |
-
correlation_coefficients=df_correlation_coefficients,
|
687 |
-
target_scores=[
|
688 |
-
target_score_ope,
|
689 |
-
target_score_con,
|
690 |
-
target_score_ext,
|
691 |
-
target_score_agr,
|
692 |
-
target_score_nneu,
|
693 |
-
],
|
694 |
-
colleague=colleague_type(practical_subtasks),
|
695 |
-
equal_coefficients=equal_coefficient,
|
696 |
-
out=False,
|
697 |
-
)
|
698 |
-
df = apply_rounding_and_rename_columns(b5.df_files_colleague_)
|
699 |
|
700 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
701 |
|
702 |
-
|
703 |
-
colleague_type(practical_subtasks)
|
704 |
-
+ config_data.Filenames_COLLEAGUE_RANKING
|
705 |
-
)
|
706 |
-
else:
|
707 |
-
b5._colleague_personality_type_match(
|
708 |
-
df_files=pt_scores_copy,
|
709 |
-
correlation_coefficients=None,
|
710 |
-
target_scores=[
|
711 |
-
target_score_ope,
|
712 |
-
target_score_con,
|
713 |
-
target_score_ext,
|
714 |
-
target_score_agr,
|
715 |
-
target_score_nneu,
|
716 |
-
],
|
717 |
-
threshold=equal_coefficient,
|
718 |
-
out=False,
|
719 |
-
)
|
720 |
-
df = b5.df_files_MBTI_colleague_match_.rename(
|
721 |
-
columns={
|
722 |
-
"MBTI": "Personality Type",
|
723 |
-
"MBTI_Score": "Personality Type Score",
|
724 |
-
}
|
725 |
-
)
|
726 |
|
727 |
-
|
728 |
|
729 |
-
|
|
|
|
|
730 |
|
731 |
df_hidden.reset_index(inplace=True)
|
732 |
|
733 |
-
person_id = (
|
734 |
-
int(
|
735 |
-
df_hidden.iloc[
|
736 |
-
(
|
737 |
-
0
|
738 |
-
if practical_subtasks.lower()
|
739 |
-
!= "finding a suitable colleague by personality types"
|
740 |
-
else 1
|
741 |
-
)
|
742 |
-
][config_data.Dataframes_PT_SCORES[0][0]]
|
743 |
-
)
|
744 |
-
- 1
|
745 |
-
)
|
746 |
|
747 |
person_metadata = create_person_metadata(person_id, files, video_metadata)
|
748 |
|
@@ -838,7 +788,7 @@ def event_handler_calculate_practical_task_blocks(
|
|
838 |
|
839 |
df_hidden = df_hidden.reset_index()
|
840 |
|
841 |
-
df_hidden.columns = ["
|
842 |
|
843 |
df_hidden.to_csv(consumer_preferences(practical_subtasks))
|
844 |
|
|
|
576 |
elif practical_subtasks.lower() == "professional skills":
|
577 |
df_professional_skills = read_csv_file(config_data.Links_PROFESSIONAL_SKILLS)
|
578 |
|
|
|
|
|
|
|
|
|
579 |
b5._priority_skill_calculation(
|
580 |
+
df_files=pt_scores.iloc[:, 1:],
|
581 |
correlation_coefficients=df_professional_skills,
|
582 |
threshold=threshold_professional_skills,
|
583 |
out=False,
|
|
|
607 |
df_hidden = df_hidden.sort_values(
|
608 |
by=[dropdown_professional_skills], ascending=False
|
609 |
)
|
|
|
610 |
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
611 |
df_hidden = df_hidden.melt(
|
612 |
var_name="Professional Skill", value_name="Summary Score"
|
613 |
)
|
614 |
df_hidden = df_hidden.sort_values(by=["Summary Score"], ascending=False)
|
615 |
+
|
616 |
+
df_hidden.reset_index(drop=True, inplace=True)
|
617 |
|
618 |
df_hidden.to_csv(config_data.Filenames_PT_SKILLS_SCORES)
|
619 |
|
|
|
662 |
elif (
|
663 |
practical_subtasks.lower() == "finding a suitable junior colleague"
|
664 |
or practical_subtasks.lower() == "finding a suitable senior colleague"
|
|
|
|
|
665 |
):
|
666 |
+
df_correlation_coefficients = read_csv_file(
|
667 |
+
config_data.Links_FINDING_COLLEAGUE, ["ID"]
|
668 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
669 |
|
670 |
+
b5._colleague_ranking(
|
671 |
+
df_files=pt_scores.iloc[:, 1:],
|
672 |
+
correlation_coefficients=df_correlation_coefficients,
|
673 |
+
target_scores=[
|
674 |
+
target_score_ope,
|
675 |
+
target_score_con,
|
676 |
+
target_score_ext,
|
677 |
+
target_score_agr,
|
678 |
+
target_score_nneu,
|
679 |
+
],
|
680 |
+
colleague=colleague_type(practical_subtasks),
|
681 |
+
equal_coefficients=equal_coefficient,
|
682 |
+
out=False,
|
683 |
+
)
|
684 |
|
685 |
+
df = apply_rounding_and_rename_columns(b5.df_files_colleague_)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
686 |
|
687 |
+
df_hidden = df.drop(columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS)
|
688 |
|
689 |
+
df_hidden.to_csv(
|
690 |
+
colleague_type(practical_subtasks) + config_data.Filenames_COLLEAGUE_RANKING
|
691 |
+
)
|
692 |
|
693 |
df_hidden.reset_index(inplace=True)
|
694 |
|
695 |
+
person_id = int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
696 |
|
697 |
person_metadata = create_person_metadata(person_id, files, video_metadata)
|
698 |
|
|
|
788 |
|
789 |
df_hidden = df_hidden.reset_index()
|
790 |
|
791 |
+
df_hidden.columns = ["Category", "Priority"]
|
792 |
|
793 |
df_hidden.to_csv(consumer_preferences(practical_subtasks))
|
794 |
|
app/event_handlers/practical_subtasks.py
CHANGED
@@ -219,8 +219,6 @@ def event_handler_practical_subtasks(
|
|
219 |
elif (
|
220 |
practical_subtasks.lower() == "finding a suitable junior colleague"
|
221 |
or practical_subtasks.lower() == "finding a suitable senior colleague"
|
222 |
-
or practical_subtasks.lower()
|
223 |
-
== "finding a suitable colleague by personality types"
|
224 |
):
|
225 |
return (
|
226 |
practical_subtasks_selected,
|
@@ -299,12 +297,7 @@ def event_handler_practical_subtasks(
|
|
299 |
minimum=0.0,
|
300 |
maximum=1.0,
|
301 |
step=0.01,
|
302 |
-
label=
|
303 |
-
config_data.Labels_THRESHOLD_TARGET_SCORE_LABEL
|
304 |
-
if practical_subtasks.lower()
|
305 |
-
== "finding a suitable colleague by personality types"
|
306 |
-
else config_data.Labels_EQUAL_COEFFICIENT_LABEL
|
307 |
-
),
|
308 |
info=config_data.InformationMessages_VALUE_FROM_TO_INFO.format(0, 1.0),
|
309 |
show_label=True,
|
310 |
interactive=True,
|
|
|
219 |
elif (
|
220 |
practical_subtasks.lower() == "finding a suitable junior colleague"
|
221 |
or practical_subtasks.lower() == "finding a suitable senior colleague"
|
|
|
|
|
222 |
):
|
223 |
return (
|
224 |
practical_subtasks_selected,
|
|
|
297 |
minimum=0.0,
|
298 |
maximum=1.0,
|
299 |
step=0.01,
|
300 |
+
label=config_data.Labels_EQUAL_COEFFICIENT_LABEL,
|
|
|
|
|
|
|
|
|
|
|
301 |
info=config_data.InformationMessages_VALUE_FROM_TO_INFO.format(0, 1.0),
|
302 |
show_label=True,
|
303 |
interactive=True,
|
app/event_handlers/practical_task_sorted.py
CHANGED
@@ -37,13 +37,7 @@ def event_handler_practical_task_sorted(
|
|
37 |
label = ""
|
38 |
label += " " + config_data.Dataframes_PT_SCORES[0][0]
|
39 |
|
40 |
-
|
41 |
-
is_filename = Path(files[person_id]).name in video_metadata
|
42 |
-
except IndexError:
|
43 |
-
is_filename = False
|
44 |
-
person_id = 0
|
45 |
-
|
46 |
-
if is_filename:
|
47 |
person_metadata_list = video_metadata[Path(files[person_id]).name]
|
48 |
|
49 |
person_metadata = (
|
|
|
37 |
label = ""
|
38 |
label += " " + config_data.Dataframes_PT_SCORES[0][0]
|
39 |
|
40 |
+
if Path(files[person_id]).name in video_metadata:
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
person_metadata_list = video_metadata[Path(files[person_id]).name]
|
42 |
|
43 |
person_metadata = (
|
app/utils.py
CHANGED
@@ -49,7 +49,7 @@ def read_csv_file(file_path, drop_columns=[]):
|
|
49 |
|
50 |
def round_numeric_values(x):
|
51 |
if isinstance(x, (int, float)):
|
52 |
-
return round(x,
|
53 |
|
54 |
return x
|
55 |
|
|
|
49 |
|
50 |
def round_numeric_values(x):
|
51 |
if isinstance(x, (int, float)):
|
52 |
+
return round(x, 3)
|
53 |
|
54 |
return x
|
55 |
|
config.toml
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
[AppSettings]
|
2 |
-
APP_VERSION = "0.
|
3 |
SERVER_NAME = "127.0.0.1"
|
4 |
PORT = 7860
|
5 |
CSS_PATH = "app.css"
|
@@ -72,7 +72,6 @@ TARGET_SCORE_EXT_LABEL = "Extraversion target score"
|
|
72 |
TARGET_SCORE_AGR_LABEL = "Agreeableness target score"
|
73 |
TARGET_SCORE_NNEU_LABEL = "Non-Neuroticism target score"
|
74 |
EQUAL_COEFFICIENT_LABEL = "Equal coefficient"
|
75 |
-
THRESHOLD_TARGET_SCORE_LABEL = "Polarity traits threshold"
|
76 |
NUMBER_PRIORITY_LABEL = "Priority number"
|
77 |
NUMBER_IMPORTANCE_TRAITS_LABEL = "Importance traits number"
|
78 |
NUMBER_IMPORTANCE_OPE_LABEL = "Openness weight"
|
|
|
1 |
[AppSettings]
|
2 |
+
APP_VERSION = "0.10.8"
|
3 |
SERVER_NAME = "127.0.0.1"
|
4 |
PORT = 7860
|
5 |
CSS_PATH = "app.css"
|
|
|
72 |
TARGET_SCORE_AGR_LABEL = "Agreeableness target score"
|
73 |
TARGET_SCORE_NNEU_LABEL = "Non-Neuroticism target score"
|
74 |
EQUAL_COEFFICIENT_LABEL = "Equal coefficient"
|
|
|
75 |
NUMBER_PRIORITY_LABEL = "Priority number"
|
76 |
NUMBER_IMPORTANCE_TRAITS_LABEL = "Importance traits number"
|
77 |
NUMBER_IMPORTANCE_OPE_LABEL = "Openness weight"
|
practical_tasks_en.yaml
CHANGED
@@ -7,7 +7,6 @@
|
|
7 |
subtasks:
|
8 |
- "Finding a suitable junior colleague"
|
9 |
- "Finding a suitable senior colleague"
|
10 |
-
- "Finding a suitable colleague by personality types"
|
11 |
- task: "Predicting consumer preferences for industrial goods"
|
12 |
subtasks:
|
13 |
- "Car characteristics"
|
|
|
7 |
subtasks:
|
8 |
- "Finding a suitable junior colleague"
|
9 |
- "Finding a suitable senior colleague"
|
|
|
10 |
- task: "Predicting consumer preferences for industrial goods"
|
11 |
subtasks:
|
12 |
- "Car characteristics"
|
practical_tasks_ru.yaml
CHANGED
@@ -7,7 +7,6 @@
|
|
7 |
subtasks:
|
8 |
- "Поиск подходящего младшего коллеги"
|
9 |
- "Поиск подходящего старшего коллеги"
|
10 |
-
- "Поиск подходящего коллеги по типам личности"
|
11 |
- task: "Прогнозирование потребительских предпочтений в отношении промышленных товаров"
|
12 |
subtasks:
|
13 |
- "Характеристики автомобиля"
|
|
|
7 |
subtasks:
|
8 |
- "Поиск подходящего младшего коллеги"
|
9 |
- "Поиск подходящего старшего коллеги"
|
|
|
10 |
- task: "Прогнозирование потребительских предпочтений в отношении промышленных товаров"
|
11 |
subtasks:
|
12 |
- "Характеристики автомобиля"
|