app/event_handlers/calculate_practical_tasks.py CHANGED
@@ -576,12 +576,8 @@ def event_handler_calculate_practical_task_blocks(
576
  elif practical_subtasks.lower() == "professional skills":
577
  df_professional_skills = read_csv_file(config_data.Links_PROFESSIONAL_SKILLS)
578
 
579
- pt_scores_copy = pt_scores.iloc[:, 1:].copy()
580
-
581
- preprocess_scores_df(pt_scores_copy, config_data.Dataframes_PT_SCORES[0][0])
582
-
583
  b5._priority_skill_calculation(
584
- df_files=pt_scores_copy,
585
  correlation_coefficients=df_professional_skills,
586
  threshold=threshold_professional_skills,
587
  out=False,
@@ -611,13 +607,13 @@ def event_handler_calculate_practical_task_blocks(
611
  df_hidden = df_hidden.sort_values(
612
  by=[dropdown_professional_skills], ascending=False
613
  )
614
- df_hidden.reset_index(inplace=True)
615
  elif type_modes == config_data.Settings_TYPE_MODES[1]:
616
  df_hidden = df_hidden.melt(
617
  var_name="Professional Skill", value_name="Summary Score"
618
  )
619
  df_hidden = df_hidden.sort_values(by=["Summary Score"], ascending=False)
620
- df_hidden.reset_index(drop=True, inplace=True)
 
621
 
622
  df_hidden.to_csv(config_data.Filenames_PT_SKILLS_SCORES)
623
 
@@ -666,83 +662,37 @@ def event_handler_calculate_practical_task_blocks(
666
  elif (
667
  practical_subtasks.lower() == "finding a suitable junior colleague"
668
  or practical_subtasks.lower() == "finding a suitable senior colleague"
669
- or practical_subtasks.lower()
670
- == "finding a suitable colleague by personality types"
671
  ):
672
- pt_scores_copy = pt_scores.iloc[:, 1:].copy()
673
-
674
- preprocess_scores_df(pt_scores_copy, config_data.Dataframes_PT_SCORES[0][0])
675
-
676
- if (
677
- practical_subtasks.lower()
678
- != "finding a suitable colleague by personality types"
679
- ):
680
- df_correlation_coefficients = read_csv_file(
681
- config_data.Links_FINDING_COLLEAGUE, ["ID"]
682
- )
683
-
684
- b5._colleague_ranking(
685
- df_files=pt_scores_copy,
686
- correlation_coefficients=df_correlation_coefficients,
687
- target_scores=[
688
- target_score_ope,
689
- target_score_con,
690
- target_score_ext,
691
- target_score_agr,
692
- target_score_nneu,
693
- ],
694
- colleague=colleague_type(practical_subtasks),
695
- equal_coefficients=equal_coefficient,
696
- out=False,
697
- )
698
- df = apply_rounding_and_rename_columns(b5.df_files_colleague_)
699
 
700
- df_hidden = df.drop(columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS)
 
 
 
 
 
 
 
 
 
 
 
 
 
701
 
702
- df_hidden.to_csv(
703
- colleague_type(practical_subtasks)
704
- + config_data.Filenames_COLLEAGUE_RANKING
705
- )
706
- else:
707
- b5._colleague_personality_type_match(
708
- df_files=pt_scores_copy,
709
- correlation_coefficients=None,
710
- target_scores=[
711
- target_score_ope,
712
- target_score_con,
713
- target_score_ext,
714
- target_score_agr,
715
- target_score_nneu,
716
- ],
717
- threshold=equal_coefficient,
718
- out=False,
719
- )
720
- df = b5.df_files_MBTI_colleague_match_.rename(
721
- columns={
722
- "MBTI": "Personality Type",
723
- "MBTI_Score": "Personality Type Score",
724
- }
725
- )
726
 
727
- df_hidden = df[["Path", "Personality Type", "Match"]]
728
 
729
- df_hidden.to_csv(config_data.Filenames_COLLEAGUE_RANKING)
 
 
730
 
731
  df_hidden.reset_index(inplace=True)
732
 
733
- person_id = (
734
- int(
735
- df_hidden.iloc[
736
- (
737
- 0
738
- if practical_subtasks.lower()
739
- != "finding a suitable colleague by personality types"
740
- else 1
741
- )
742
- ][config_data.Dataframes_PT_SCORES[0][0]]
743
- )
744
- - 1
745
- )
746
 
747
  person_metadata = create_person_metadata(person_id, files, video_metadata)
748
 
@@ -838,7 +788,7 @@ def event_handler_calculate_practical_task_blocks(
838
 
839
  df_hidden = df_hidden.reset_index()
840
 
841
- df_hidden.columns = ["Priority", "Category"]
842
 
843
  df_hidden.to_csv(consumer_preferences(practical_subtasks))
844
 
 
576
  elif practical_subtasks.lower() == "professional skills":
577
  df_professional_skills = read_csv_file(config_data.Links_PROFESSIONAL_SKILLS)
578
 
 
 
 
 
579
  b5._priority_skill_calculation(
580
+ df_files=pt_scores.iloc[:, 1:],
581
  correlation_coefficients=df_professional_skills,
582
  threshold=threshold_professional_skills,
583
  out=False,
 
607
  df_hidden = df_hidden.sort_values(
608
  by=[dropdown_professional_skills], ascending=False
609
  )
 
610
  elif type_modes == config_data.Settings_TYPE_MODES[1]:
611
  df_hidden = df_hidden.melt(
612
  var_name="Professional Skill", value_name="Summary Score"
613
  )
614
  df_hidden = df_hidden.sort_values(by=["Summary Score"], ascending=False)
615
+
616
+ df_hidden.reset_index(drop=True, inplace=True)
617
 
618
  df_hidden.to_csv(config_data.Filenames_PT_SKILLS_SCORES)
619
 
 
662
  elif (
663
  practical_subtasks.lower() == "finding a suitable junior colleague"
664
  or practical_subtasks.lower() == "finding a suitable senior colleague"
 
 
665
  ):
666
+ df_correlation_coefficients = read_csv_file(
667
+ config_data.Links_FINDING_COLLEAGUE, ["ID"]
668
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669
 
670
+ b5._colleague_ranking(
671
+ df_files=pt_scores.iloc[:, 1:],
672
+ correlation_coefficients=df_correlation_coefficients,
673
+ target_scores=[
674
+ target_score_ope,
675
+ target_score_con,
676
+ target_score_ext,
677
+ target_score_agr,
678
+ target_score_nneu,
679
+ ],
680
+ colleague=colleague_type(practical_subtasks),
681
+ equal_coefficients=equal_coefficient,
682
+ out=False,
683
+ )
684
 
685
+ df = apply_rounding_and_rename_columns(b5.df_files_colleague_)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686
 
687
+ df_hidden = df.drop(columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS)
688
 
689
+ df_hidden.to_csv(
690
+ colleague_type(practical_subtasks) + config_data.Filenames_COLLEAGUE_RANKING
691
+ )
692
 
693
  df_hidden.reset_index(inplace=True)
694
 
695
+ person_id = int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1
 
 
 
 
 
 
 
 
 
 
 
 
696
 
697
  person_metadata = create_person_metadata(person_id, files, video_metadata)
698
 
 
788
 
789
  df_hidden = df_hidden.reset_index()
790
 
791
+ df_hidden.columns = ["Category", "Priority"]
792
 
793
  df_hidden.to_csv(consumer_preferences(practical_subtasks))
794
 
app/event_handlers/practical_subtasks.py CHANGED
@@ -219,8 +219,6 @@ def event_handler_practical_subtasks(
219
  elif (
220
  practical_subtasks.lower() == "finding a suitable junior colleague"
221
  or practical_subtasks.lower() == "finding a suitable senior colleague"
222
- or practical_subtasks.lower()
223
- == "finding a suitable colleague by personality types"
224
  ):
225
  return (
226
  practical_subtasks_selected,
@@ -299,12 +297,7 @@ def event_handler_practical_subtasks(
299
  minimum=0.0,
300
  maximum=1.0,
301
  step=0.01,
302
- label=(
303
- config_data.Labels_THRESHOLD_TARGET_SCORE_LABEL
304
- if practical_subtasks.lower()
305
- == "finding a suitable colleague by personality types"
306
- else config_data.Labels_EQUAL_COEFFICIENT_LABEL
307
- ),
308
  info=config_data.InformationMessages_VALUE_FROM_TO_INFO.format(0, 1.0),
309
  show_label=True,
310
  interactive=True,
 
219
  elif (
220
  practical_subtasks.lower() == "finding a suitable junior colleague"
221
  or practical_subtasks.lower() == "finding a suitable senior colleague"
 
 
222
  ):
223
  return (
224
  practical_subtasks_selected,
 
297
  minimum=0.0,
298
  maximum=1.0,
299
  step=0.01,
300
+ label=config_data.Labels_EQUAL_COEFFICIENT_LABEL,
 
 
 
 
 
301
  info=config_data.InformationMessages_VALUE_FROM_TO_INFO.format(0, 1.0),
302
  show_label=True,
303
  interactive=True,
app/event_handlers/practical_task_sorted.py CHANGED
@@ -37,13 +37,7 @@ def event_handler_practical_task_sorted(
37
  label = ""
38
  label += " " + config_data.Dataframes_PT_SCORES[0][0]
39
 
40
- try:
41
- is_filename = Path(files[person_id]).name in video_metadata
42
- except IndexError:
43
- is_filename = False
44
- person_id = 0
45
-
46
- if is_filename:
47
  person_metadata_list = video_metadata[Path(files[person_id]).name]
48
 
49
  person_metadata = (
 
37
  label = ""
38
  label += " " + config_data.Dataframes_PT_SCORES[0][0]
39
 
40
+ if Path(files[person_id]).name in video_metadata:
 
 
 
 
 
 
41
  person_metadata_list = video_metadata[Path(files[person_id]).name]
42
 
43
  person_metadata = (
app/utils.py CHANGED
@@ -49,7 +49,7 @@ def read_csv_file(file_path, drop_columns=[]):
49
 
50
  def round_numeric_values(x):
51
  if isinstance(x, (int, float)):
52
- return round(x, 4)
53
 
54
  return x
55
 
 
49
 
50
  def round_numeric_values(x):
51
  if isinstance(x, (int, float)):
52
+ return round(x, 3)
53
 
54
  return x
55
 
config.toml CHANGED
@@ -1,5 +1,5 @@
1
  [AppSettings]
2
- APP_VERSION = "0.11.1"
3
  SERVER_NAME = "127.0.0.1"
4
  PORT = 7860
5
  CSS_PATH = "app.css"
@@ -72,7 +72,6 @@ TARGET_SCORE_EXT_LABEL = "Extraversion target score"
72
  TARGET_SCORE_AGR_LABEL = "Agreeableness target score"
73
  TARGET_SCORE_NNEU_LABEL = "Non-Neuroticism target score"
74
  EQUAL_COEFFICIENT_LABEL = "Equal coefficient"
75
- THRESHOLD_TARGET_SCORE_LABEL = "Polarity traits threshold"
76
  NUMBER_PRIORITY_LABEL = "Priority number"
77
  NUMBER_IMPORTANCE_TRAITS_LABEL = "Importance traits number"
78
  NUMBER_IMPORTANCE_OPE_LABEL = "Openness weight"
 
1
  [AppSettings]
2
+ APP_VERSION = "0.10.8"
3
  SERVER_NAME = "127.0.0.1"
4
  PORT = 7860
5
  CSS_PATH = "app.css"
 
72
  TARGET_SCORE_AGR_LABEL = "Agreeableness target score"
73
  TARGET_SCORE_NNEU_LABEL = "Non-Neuroticism target score"
74
  EQUAL_COEFFICIENT_LABEL = "Equal coefficient"
 
75
  NUMBER_PRIORITY_LABEL = "Priority number"
76
  NUMBER_IMPORTANCE_TRAITS_LABEL = "Importance traits number"
77
  NUMBER_IMPORTANCE_OPE_LABEL = "Openness weight"
practical_tasks_en.yaml CHANGED
@@ -7,7 +7,6 @@
7
  subtasks:
8
  - "Finding a suitable junior colleague"
9
  - "Finding a suitable senior colleague"
10
- - "Finding a suitable colleague by personality types"
11
  - task: "Predicting consumer preferences for industrial goods"
12
  subtasks:
13
  - "Car characteristics"
 
7
  subtasks:
8
  - "Finding a suitable junior colleague"
9
  - "Finding a suitable senior colleague"
 
10
  - task: "Predicting consumer preferences for industrial goods"
11
  subtasks:
12
  - "Car characteristics"
practical_tasks_ru.yaml CHANGED
@@ -7,7 +7,6 @@
7
  subtasks:
8
  - "Поиск подходящего младшего коллеги"
9
  - "Поиск подходящего старшего коллеги"
10
- - "Поиск подходящего коллеги по типам личности"
11
  - task: "Прогнозирование потребительских предпочтений в отношении промышленных товаров"
12
  subtasks:
13
  - "Характеристики автомобиля"
 
7
  subtasks:
8
  - "Поиск подходящего младшего коллеги"
9
  - "Поиск подходящего старшего коллеги"
 
10
  - task: "Прогнозирование потребительских предпочтений в отношении промышленных товаров"
11
  subtasks:
12
  - "Характеристики автомобиля"