Spaces:
Running
Running
v0.10.6
#27
by
DmitryRyumin
- opened
- README.md +1 -1
- app.css +0 -8
- app/event_handlers/calculate_practical_tasks.py +40 -136
- app/event_handlers/calculate_pt_scores_blocks.py +1 -1
- app/event_handlers/clear_blocks.py +1 -5
- app/event_handlers/event_handlers.py +4 -2
- app/event_handlers/examples_blocks.py +29 -24
- app/event_handlers/files.py +1 -5
- app/event_handlers/languages.py +14 -27
- app/event_handlers/practical_subtasks.py +9 -25
- app/event_handlers/practical_task_sorted.py +1 -7
- app/event_handlers/practical_tasks.py +1 -1
- app/event_handlers/switching_modes.py +6 -34
- app/event_handlers/webcam.py +1 -5
- app/tabs.py +1 -1
- app/utils.py +1 -1
- config.toml +2 -4
- practical_tasks_en.yaml +1 -2
- practical_tasks_ru.yaml +0 -1
- requirements.txt +1 -1
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 😀🤓😎😉😤
|
|
4 |
colorFrom: gray
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.7.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
app.css
CHANGED
@@ -265,14 +265,6 @@ div.surname-container > div.metadata_surname-logo div.image-container,
|
|
265 |
div.email-container > div.metadata_email-logo div.image-container,
|
266 |
div.phone-container > div.metadata_phone-logo div.image-container {
|
267 |
width: fit-content;
|
268 |
-
min-width: auto;
|
269 |
-
}
|
270 |
-
|
271 |
-
div.name-container > div.metadata_name-logo div.image-container > div.icon-button-wrapper,
|
272 |
-
div.surname-container > div.metadata_surname-logo div.image-container > div.icon-button-wrapper,
|
273 |
-
div.email-container > div.metadata_email-logo div.image-container > div.icon-button-wrapper,
|
274 |
-
div.phone-container > div.metadata_phone-logo div.image-container > div.icon-button-wrapper {
|
275 |
-
display: none;
|
276 |
}
|
277 |
|
278 |
div.name-container > div.metadata_name-logo div.image-container > button > div > img,
|
|
|
265 |
div.email-container > div.metadata_email-logo div.image-container,
|
266 |
div.phone-container > div.metadata_phone-logo div.image-container {
|
267 |
width: fit-content;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
}
|
269 |
|
270 |
div.name-container > div.metadata_name-logo div.image-container > button > div > img,
|
app/event_handlers/calculate_practical_tasks.py
CHANGED
@@ -576,12 +576,8 @@ def event_handler_calculate_practical_task_blocks(
|
|
576 |
elif practical_subtasks.lower() == "professional skills":
|
577 |
df_professional_skills = read_csv_file(config_data.Links_PROFESSIONAL_SKILLS)
|
578 |
|
579 |
-
pt_scores_copy = pt_scores.iloc[:, 1:].copy()
|
580 |
-
|
581 |
-
preprocess_scores_df(pt_scores_copy, config_data.Dataframes_PT_SCORES[0][0])
|
582 |
-
|
583 |
b5._priority_skill_calculation(
|
584 |
-
df_files=
|
585 |
correlation_coefficients=df_professional_skills,
|
586 |
threshold=threshold_professional_skills,
|
587 |
out=False,
|
@@ -589,44 +585,26 @@ def event_handler_calculate_practical_task_blocks(
|
|
589 |
|
590 |
df = apply_rounding_and_rename_columns(b5.df_files_priority_skill_)
|
591 |
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
)
|
596 |
-
|
597 |
-
professional_skills_list.remove(dropdown_professional_skills)
|
598 |
|
599 |
-
|
600 |
-
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
601 |
-
professional_skills_list = []
|
602 |
-
del_cols = config_data.Settings_DROPDOWN_MBTI_DEL_COLS_WEBCAM
|
603 |
|
604 |
df_hidden = df.drop(
|
605 |
columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS
|
606 |
+ professional_skills_list
|
607 |
-
+ del_cols
|
608 |
)
|
609 |
|
610 |
-
if type_modes == config_data.Settings_TYPE_MODES[0]:
|
611 |
-
df_hidden = df_hidden.sort_values(
|
612 |
-
by=[dropdown_professional_skills], ascending=False
|
613 |
-
)
|
614 |
-
df_hidden.reset_index(inplace=True)
|
615 |
-
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
616 |
-
df_hidden = df_hidden.melt(
|
617 |
-
var_name="Professional Skill", value_name="Summary Score"
|
618 |
-
)
|
619 |
-
df_hidden = df_hidden.sort_values(by=["Summary Score"], ascending=False)
|
620 |
-
df_hidden.reset_index(drop=True, inplace=True)
|
621 |
-
|
622 |
df_hidden.to_csv(config_data.Filenames_PT_SKILLS_SCORES)
|
623 |
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
|
|
630 |
|
631 |
person_metadata = create_person_metadata(person_id, files, video_metadata)
|
632 |
|
@@ -666,83 +644,37 @@ def event_handler_calculate_practical_task_blocks(
|
|
666 |
elif (
|
667 |
practical_subtasks.lower() == "finding a suitable junior colleague"
|
668 |
or practical_subtasks.lower() == "finding a suitable senior colleague"
|
669 |
-
or practical_subtasks.lower()
|
670 |
-
== "finding a suitable colleague by personality types"
|
671 |
):
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
if (
|
677 |
-
practical_subtasks.lower()
|
678 |
-
!= "finding a suitable colleague by personality types"
|
679 |
-
):
|
680 |
-
df_correlation_coefficients = read_csv_file(
|
681 |
-
config_data.Links_FINDING_COLLEAGUE, ["ID"]
|
682 |
-
)
|
683 |
-
|
684 |
-
b5._colleague_ranking(
|
685 |
-
df_files=pt_scores_copy,
|
686 |
-
correlation_coefficients=df_correlation_coefficients,
|
687 |
-
target_scores=[
|
688 |
-
target_score_ope,
|
689 |
-
target_score_con,
|
690 |
-
target_score_ext,
|
691 |
-
target_score_agr,
|
692 |
-
target_score_nneu,
|
693 |
-
],
|
694 |
-
colleague=colleague_type(practical_subtasks),
|
695 |
-
equal_coefficients=equal_coefficient,
|
696 |
-
out=False,
|
697 |
-
)
|
698 |
-
df = apply_rounding_and_rename_columns(b5.df_files_colleague_)
|
699 |
|
700 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
701 |
|
702 |
-
|
703 |
-
colleague_type(practical_subtasks)
|
704 |
-
+ config_data.Filenames_COLLEAGUE_RANKING
|
705 |
-
)
|
706 |
-
else:
|
707 |
-
b5._colleague_personality_type_match(
|
708 |
-
df_files=pt_scores_copy,
|
709 |
-
correlation_coefficients=None,
|
710 |
-
target_scores=[
|
711 |
-
target_score_ope,
|
712 |
-
target_score_con,
|
713 |
-
target_score_ext,
|
714 |
-
target_score_agr,
|
715 |
-
target_score_nneu,
|
716 |
-
],
|
717 |
-
threshold=equal_coefficient,
|
718 |
-
out=False,
|
719 |
-
)
|
720 |
-
df = b5.df_files_MBTI_colleague_match_.rename(
|
721 |
-
columns={
|
722 |
-
"MBTI": "Personality Type",
|
723 |
-
"MBTI_Score": "Personality Type Score",
|
724 |
-
}
|
725 |
-
)
|
726 |
|
727 |
-
|
728 |
|
729 |
-
|
|
|
|
|
730 |
|
731 |
df_hidden.reset_index(inplace=True)
|
732 |
|
733 |
-
person_id = (
|
734 |
-
int(
|
735 |
-
df_hidden.iloc[
|
736 |
-
(
|
737 |
-
0
|
738 |
-
if practical_subtasks.lower()
|
739 |
-
!= "finding a suitable colleague by personality types"
|
740 |
-
else 1
|
741 |
-
)
|
742 |
-
][config_data.Dataframes_PT_SCORES[0][0]]
|
743 |
-
)
|
744 |
-
- 1
|
745 |
-
)
|
746 |
|
747 |
person_metadata = create_person_metadata(person_id, files, video_metadata)
|
748 |
|
@@ -783,7 +715,7 @@ def event_handler_calculate_practical_task_blocks(
|
|
783 |
elif (
|
784 |
practical_subtasks.lower() == "car characteristics"
|
785 |
or practical_subtasks.lower() == "mobile device application categories"
|
786 |
-
or practical_subtasks.lower() == "clothing
|
787 |
):
|
788 |
if practical_subtasks.lower() == "car characteristics":
|
789 |
df_correlation_coefficients = read_csv_file(
|
@@ -794,13 +726,9 @@ def event_handler_calculate_practical_task_blocks(
|
|
794 |
df_correlation_coefficients = read_csv_file(
|
795 |
config_data.Links_MDA_CATEGORIES
|
796 |
)
|
797 |
-
elif practical_subtasks.lower() == "clothing
|
798 |
df_correlation_coefficients = read_csv_file(config_data.Links_CLOTHING_SC)
|
799 |
|
800 |
-
if type_modes == config_data.Settings_TYPE_MODES[1]:
|
801 |
-
number_priority = df_correlation_coefficients.columns.size - 1
|
802 |
-
number_importance_traits = 5
|
803 |
-
|
804 |
pt_scores_copy = pt_scores.iloc[:, 1:].copy()
|
805 |
|
806 |
preprocess_scores_df(pt_scores_copy, config_data.Dataframes_PT_SCORES[0][0])
|
@@ -822,37 +750,13 @@ def event_handler_calculate_practical_task_blocks(
|
|
822 |
|
823 |
preprocess_scores_df(df, config_data.Dataframes_PT_SCORES[0][0])
|
824 |
|
825 |
-
|
826 |
-
del_cols = []
|
827 |
-
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
828 |
-
del_cols = config_data.Settings_DROPDOWN_MBTI_DEL_COLS_WEBCAM
|
829 |
-
|
830 |
-
df_hidden = df.drop(
|
831 |
-
columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS + del_cols
|
832 |
-
)
|
833 |
-
|
834 |
-
if type_modes == config_data.Settings_TYPE_MODES[1]:
|
835 |
-
df_hidden = df_hidden.T
|
836 |
-
|
837 |
-
df_hidden = df_hidden.head(-number_importance_traits)
|
838 |
-
|
839 |
-
df_hidden = df_hidden.reset_index()
|
840 |
-
|
841 |
-
df_hidden.columns = ["Priority", "Category"]
|
842 |
|
843 |
df_hidden.to_csv(consumer_preferences(practical_subtasks))
|
844 |
|
845 |
-
df_hidden.reset_index(
|
846 |
-
drop=True if type_modes == config_data.Settings_TYPE_MODES[1] else False,
|
847 |
-
inplace=True,
|
848 |
-
)
|
849 |
|
850 |
-
|
851 |
-
person_id = (
|
852 |
-
int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1
|
853 |
-
)
|
854 |
-
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
855 |
-
person_id = 0
|
856 |
|
857 |
person_metadata = create_person_metadata(person_id, files, video_metadata)
|
858 |
|
|
|
576 |
elif practical_subtasks.lower() == "professional skills":
|
577 |
df_professional_skills = read_csv_file(config_data.Links_PROFESSIONAL_SKILLS)
|
578 |
|
|
|
|
|
|
|
|
|
579 |
b5._priority_skill_calculation(
|
580 |
+
df_files=pt_scores.iloc[:, 1:],
|
581 |
correlation_coefficients=df_professional_skills,
|
582 |
threshold=threshold_professional_skills,
|
583 |
out=False,
|
|
|
585 |
|
586 |
df = apply_rounding_and_rename_columns(b5.df_files_priority_skill_)
|
587 |
|
588 |
+
professional_skills_list = (
|
589 |
+
config_data.Settings_DROPDOWN_PROFESSIONAL_SKILLS.copy()
|
590 |
+
)
|
|
|
|
|
|
|
591 |
|
592 |
+
professional_skills_list.remove(dropdown_professional_skills)
|
|
|
|
|
|
|
593 |
|
594 |
df_hidden = df.drop(
|
595 |
columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS
|
596 |
+ professional_skills_list
|
|
|
597 |
)
|
598 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
599 |
df_hidden.to_csv(config_data.Filenames_PT_SKILLS_SCORES)
|
600 |
|
601 |
+
df_hidden.reset_index(inplace=True)
|
602 |
+
|
603 |
+
df_hidden = df_hidden.sort_values(
|
604 |
+
by=[dropdown_professional_skills], ascending=False
|
605 |
+
)
|
606 |
+
|
607 |
+
person_id = int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1
|
608 |
|
609 |
person_metadata = create_person_metadata(person_id, files, video_metadata)
|
610 |
|
|
|
644 |
elif (
|
645 |
practical_subtasks.lower() == "finding a suitable junior colleague"
|
646 |
or practical_subtasks.lower() == "finding a suitable senior colleague"
|
|
|
|
|
647 |
):
|
648 |
+
df_correlation_coefficients = read_csv_file(
|
649 |
+
config_data.Links_FINDING_COLLEAGUE, ["ID"]
|
650 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
651 |
|
652 |
+
b5._colleague_ranking(
|
653 |
+
df_files=pt_scores.iloc[:, 1:],
|
654 |
+
correlation_coefficients=df_correlation_coefficients,
|
655 |
+
target_scores=[
|
656 |
+
target_score_ope,
|
657 |
+
target_score_con,
|
658 |
+
target_score_ext,
|
659 |
+
target_score_agr,
|
660 |
+
target_score_nneu,
|
661 |
+
],
|
662 |
+
colleague=colleague_type(practical_subtasks),
|
663 |
+
equal_coefficients=equal_coefficient,
|
664 |
+
out=False,
|
665 |
+
)
|
666 |
|
667 |
+
df = apply_rounding_and_rename_columns(b5.df_files_colleague_)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
668 |
|
669 |
+
df_hidden = df.drop(columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS)
|
670 |
|
671 |
+
df_hidden.to_csv(
|
672 |
+
colleague_type(practical_subtasks) + config_data.Filenames_COLLEAGUE_RANKING
|
673 |
+
)
|
674 |
|
675 |
df_hidden.reset_index(inplace=True)
|
676 |
|
677 |
+
person_id = int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
678 |
|
679 |
person_metadata = create_person_metadata(person_id, files, video_metadata)
|
680 |
|
|
|
715 |
elif (
|
716 |
practical_subtasks.lower() == "car characteristics"
|
717 |
or practical_subtasks.lower() == "mobile device application categories"
|
718 |
+
or practical_subtasks.lower() == "clothing style correlation"
|
719 |
):
|
720 |
if practical_subtasks.lower() == "car characteristics":
|
721 |
df_correlation_coefficients = read_csv_file(
|
|
|
726 |
df_correlation_coefficients = read_csv_file(
|
727 |
config_data.Links_MDA_CATEGORIES
|
728 |
)
|
729 |
+
elif practical_subtasks.lower() == "clothing style correlation":
|
730 |
df_correlation_coefficients = read_csv_file(config_data.Links_CLOTHING_SC)
|
731 |
|
|
|
|
|
|
|
|
|
732 |
pt_scores_copy = pt_scores.iloc[:, 1:].copy()
|
733 |
|
734 |
preprocess_scores_df(pt_scores_copy, config_data.Dataframes_PT_SCORES[0][0])
|
|
|
750 |
|
751 |
preprocess_scores_df(df, config_data.Dataframes_PT_SCORES[0][0])
|
752 |
|
753 |
+
df_hidden = df.drop(columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
754 |
|
755 |
df_hidden.to_csv(consumer_preferences(practical_subtasks))
|
756 |
|
757 |
+
df_hidden.reset_index(inplace=True)
|
|
|
|
|
|
|
758 |
|
759 |
+
person_id = int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1
|
|
|
|
|
|
|
|
|
|
|
760 |
|
761 |
person_metadata = create_person_metadata(person_id, files, video_metadata)
|
762 |
|
app/event_handlers/calculate_pt_scores_blocks.py
CHANGED
@@ -52,7 +52,7 @@ def event_handler_calculate_pt_scores_blocks(
|
|
52 |
supported_practical_tasks_ren = supported_practical_tasks
|
53 |
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
54 |
rename_map = {
|
55 |
-
"Ranking potential candidates by professional responsibilities": "
|
56 |
"Ранжирование потенциальных кандидатов по профессиональным обязанностям": "Определить профессиональные возможности",
|
57 |
}
|
58 |
|
|
|
52 |
supported_practical_tasks_ren = supported_practical_tasks
|
53 |
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
54 |
rename_map = {
|
55 |
+
"Ranking potential candidates by professional responsibilities": "Determine professional possibilities",
|
56 |
"Ранжирование потенциальных кандидатов по профессиональным обязанностям": "Определить профессиональные возможности",
|
57 |
}
|
58 |
|
app/event_handlers/clear_blocks.py
CHANGED
@@ -55,11 +55,7 @@ def event_handler_clear_blocks(language, type_modes):
|
|
55 |
|
56 |
return (
|
57 |
html_message(
|
58 |
-
|
59 |
-
config_data.InformationMessages_NOTI_VIDEOS[lang_id].split("(")[0]
|
60 |
-
if lang_id == 0
|
61 |
-
else config_data.InformationMessages_NOTI_VIDEOS[lang_id]
|
62 |
-
),
|
63 |
False,
|
64 |
True,
|
65 |
"notifications",
|
|
|
55 |
|
56 |
return (
|
57 |
html_message(
|
58 |
+
config_data.InformationMessages_NOTI_VIDEOS[lang_id],
|
|
|
|
|
|
|
|
|
59 |
False,
|
60 |
True,
|
61 |
"notifications",
|
app/event_handlers/event_handlers.py
CHANGED
@@ -152,7 +152,6 @@ def setup_app_event_handlers(
|
|
152 |
switching_modes,
|
153 |
type_modes,
|
154 |
video,
|
155 |
-
examples,
|
156 |
calculate_pt_scores,
|
157 |
clear_app,
|
158 |
pt_scores,
|
@@ -299,10 +298,13 @@ def setup_app_event_handlers(
|
|
299 |
)
|
300 |
examples.click(
|
301 |
fn=event_handler_examples_blocks,
|
302 |
-
inputs=[languages
|
303 |
outputs=[
|
304 |
notifications,
|
305 |
files,
|
|
|
|
|
|
|
306 |
video,
|
307 |
calculate_pt_scores,
|
308 |
clear_app,
|
|
|
152 |
switching_modes,
|
153 |
type_modes,
|
154 |
video,
|
|
|
155 |
calculate_pt_scores,
|
156 |
clear_app,
|
157 |
pt_scores,
|
|
|
298 |
)
|
299 |
examples.click(
|
300 |
fn=event_handler_examples_blocks,
|
301 |
+
inputs=[languages],
|
302 |
outputs=[
|
303 |
notifications,
|
304 |
files,
|
305 |
+
webcam,
|
306 |
+
switching_modes,
|
307 |
+
type_modes,
|
308 |
video,
|
309 |
calculate_pt_scores,
|
310 |
clear_app,
|
app/event_handlers/examples_blocks.py
CHANGED
@@ -27,7 +27,7 @@ from app.components import (
|
|
27 |
from app.utils import get_language_settings
|
28 |
|
29 |
|
30 |
-
def event_handler_examples_blocks(language
|
31 |
lang_id, _ = get_language_settings(language)
|
32 |
|
33 |
first_practical_task = next(iter(supported_practical_tasks[lang_id]))
|
@@ -38,34 +38,39 @@ def event_handler_examples_blocks(language, type_modes):
|
|
38 |
key=lambda x: int(re.search(r"\d+", Path(x).stem).group()),
|
39 |
)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
|
61 |
return (
|
62 |
html_message(
|
63 |
-
config_data.
|
64 |
-
|
65 |
True,
|
66 |
"notifications",
|
67 |
),
|
68 |
files_ui,
|
|
|
|
|
|
|
69 |
video_create_ui(
|
70 |
value=video_files[0],
|
71 |
label=config_data.OtherMessages_VIDEO_PLAYER[lang_id],
|
@@ -73,7 +78,7 @@ def event_handler_examples_blocks(language, type_modes):
|
|
73 |
),
|
74 |
button(
|
75 |
config_data.OtherMessages_CALCULATE_PT_SCORES[lang_id],
|
76 |
-
|
77 |
3,
|
78 |
"./images/calculate_pt_scores.ico",
|
79 |
True,
|
@@ -81,7 +86,7 @@ def event_handler_examples_blocks(language, type_modes):
|
|
81 |
),
|
82 |
button(
|
83 |
config_data.OtherMessages_CLEAR_APP[lang_id],
|
84 |
-
|
85 |
1,
|
86 |
"./images/clear.ico",
|
87 |
True,
|
|
|
27 |
from app.utils import get_language_settings
|
28 |
|
29 |
|
30 |
+
def event_handler_examples_blocks(language):
|
31 |
lang_id, _ = get_language_settings(language)
|
32 |
|
33 |
first_practical_task = next(iter(supported_practical_tasks[lang_id]))
|
|
|
38 |
key=lambda x: int(re.search(r"\d+", Path(x).stem).group()),
|
39 |
)
|
40 |
|
41 |
+
files_ui = files_create_ui(
|
42 |
+
value=video_files,
|
43 |
+
label="{} ({})".format(
|
44 |
+
config_data.OtherMessages_VIDEO_FILES[lang_id],
|
45 |
+
", ".join(config_data.Settings_SUPPORTED_VIDEO_EXT),
|
46 |
+
),
|
47 |
+
file_types=[f".{ext}" for ext in config_data.Settings_SUPPORTED_VIDEO_EXT],
|
48 |
+
)
|
49 |
+
webcam = gr.Video(interactive=False, visible=False)
|
50 |
+
switching_modes = button(
|
51 |
+
config_data.OtherMessages_SWITCHEHG_MODES_ONLINE[lang_id],
|
52 |
+
True,
|
53 |
+
1,
|
54 |
+
"./images/webcam.ico",
|
55 |
+
True,
|
56 |
+
"switching_modes",
|
57 |
+
)
|
58 |
+
type_modes_ui = gr.Radio(
|
59 |
+
choices=config_data.Settings_TYPE_MODES,
|
60 |
+
value=config_data.Settings_TYPE_MODES[0],
|
61 |
+
)
|
62 |
|
63 |
return (
|
64 |
html_message(
|
65 |
+
config_data.InformationMessages_NOTI_VIDEOS[lang_id],
|
66 |
+
False,
|
67 |
True,
|
68 |
"notifications",
|
69 |
),
|
70 |
files_ui,
|
71 |
+
webcam,
|
72 |
+
switching_modes,
|
73 |
+
type_modes_ui,
|
74 |
video_create_ui(
|
75 |
value=video_files[0],
|
76 |
label=config_data.OtherMessages_VIDEO_PLAYER[lang_id],
|
|
|
78 |
),
|
79 |
button(
|
80 |
config_data.OtherMessages_CALCULATE_PT_SCORES[lang_id],
|
81 |
+
False,
|
82 |
3,
|
83 |
"./images/calculate_pt_scores.ico",
|
84 |
True,
|
|
|
86 |
),
|
87 |
button(
|
88 |
config_data.OtherMessages_CLEAR_APP[lang_id],
|
89 |
+
False,
|
90 |
1,
|
91 |
"./images/clear.ico",
|
92 |
True,
|
app/event_handlers/files.py
CHANGED
@@ -20,11 +20,7 @@ def event_handler_files(language, files, video, pt_scores):
|
|
20 |
if not files:
|
21 |
return (
|
22 |
html_message(
|
23 |
-
|
24 |
-
config_data.InformationMessages_NOTI_VIDEOS[lang_id].split("(")[0]
|
25 |
-
if lang_id == 0
|
26 |
-
else config_data.InformationMessages_NOTI_VIDEOS[lang_id]
|
27 |
-
),
|
28 |
False,
|
29 |
True,
|
30 |
"notifications",
|
|
|
20 |
if not files:
|
21 |
return (
|
22 |
html_message(
|
23 |
+
config_data.InformationMessages_NOTI_VIDEOS[lang_id],
|
|
|
|
|
|
|
|
|
24 |
False,
|
25 |
True,
|
26 |
"notifications",
|
app/event_handlers/languages.py
CHANGED
@@ -57,14 +57,6 @@ def event_handler_languages(
|
|
57 |
True,
|
58 |
"switching_modes",
|
59 |
)
|
60 |
-
examples = button(
|
61 |
-
config_data.OtherMessages_EXAMPLES_APP[lang_id],
|
62 |
-
True,
|
63 |
-
1,
|
64 |
-
"./images/examples.ico",
|
65 |
-
True,
|
66 |
-
"examples_oceanai",
|
67 |
-
)
|
68 |
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
69 |
files_ui = files_create_ui(
|
70 |
label="{} ({})".format(
|
@@ -84,23 +76,11 @@ def event_handler_languages(
|
|
84 |
True,
|
85 |
"switching_modes",
|
86 |
)
|
87 |
-
examples = button(
|
88 |
-
config_data.OtherMessages_EXAMPLE_APP[lang_id],
|
89 |
-
True,
|
90 |
-
1,
|
91 |
-
"./images/examples.ico",
|
92 |
-
True,
|
93 |
-
"examples_oceanai",
|
94 |
-
)
|
95 |
|
96 |
if not video:
|
97 |
video = video_create_ui(label=config_data.OtherMessages_VIDEO_PLAYER[lang_id])
|
98 |
noti_videos = html_message(
|
99 |
-
|
100 |
-
config_data.InformationMessages_NOTI_VIDEOS[lang_id].split("(")[0]
|
101 |
-
if lang_id == 0
|
102 |
-
else config_data.InformationMessages_NOTI_VIDEOS[lang_id]
|
103 |
-
),
|
104 |
False,
|
105 |
True,
|
106 |
"notifications",
|
@@ -155,11 +135,11 @@ def event_handler_languages(
|
|
155 |
else:
|
156 |
practical_task = next(iter(supported_practical_tasks[lang_id]))
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
|
164 |
return (
|
165 |
gr.Markdown(value=DESCRIPTIONS[lang_id]),
|
@@ -184,7 +164,14 @@ def event_handler_languages(
|
|
184 |
webcam,
|
185 |
switching_modes,
|
186 |
video,
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
button(
|
189 |
config_data.OtherMessages_CALCULATE_PT_SCORES[lang_id],
|
190 |
True if files else False,
|
|
|
57 |
True,
|
58 |
"switching_modes",
|
59 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
61 |
files_ui = files_create_ui(
|
62 |
label="{} ({})".format(
|
|
|
76 |
True,
|
77 |
"switching_modes",
|
78 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
if not video:
|
81 |
video = video_create_ui(label=config_data.OtherMessages_VIDEO_PLAYER[lang_id])
|
82 |
noti_videos = html_message(
|
83 |
+
config_data.InformationMessages_NOTI_VIDEOS[lang_id],
|
|
|
|
|
|
|
|
|
84 |
False,
|
85 |
True,
|
86 |
"notifications",
|
|
|
135 |
else:
|
136 |
practical_task = next(iter(supported_practical_tasks[lang_id]))
|
137 |
|
138 |
+
print(current_lang_tasks, "\n")
|
139 |
+
print(inverse_lang_tasks, "\n")
|
140 |
+
print(practical_tasks, "\n")
|
141 |
+
print(supported_practical_tasks, "\n")
|
142 |
+
print(practical_subtasks, "\n")
|
143 |
|
144 |
return (
|
145 |
gr.Markdown(value=DESCRIPTIONS[lang_id]),
|
|
|
164 |
webcam,
|
165 |
switching_modes,
|
166 |
video,
|
167 |
+
button(
|
168 |
+
config_data.OtherMessages_EXAMPLES_APP[lang_id],
|
169 |
+
True,
|
170 |
+
1,
|
171 |
+
"./images/examples.ico",
|
172 |
+
True,
|
173 |
+
"examples_oceanai",
|
174 |
+
),
|
175 |
button(
|
176 |
config_data.OtherMessages_CALCULATE_PT_SCORES[lang_id],
|
177 |
True if files else False,
|
app/event_handlers/practical_subtasks.py
CHANGED
@@ -219,8 +219,6 @@ def event_handler_practical_subtasks(
|
|
219 |
elif (
|
220 |
practical_subtasks.lower() == "finding a suitable junior colleague"
|
221 |
or practical_subtasks.lower() == "finding a suitable senior colleague"
|
222 |
-
or practical_subtasks.lower()
|
223 |
-
== "finding a suitable colleague by personality types"
|
224 |
):
|
225 |
return (
|
226 |
practical_subtasks_selected,
|
@@ -299,12 +297,7 @@ def event_handler_practical_subtasks(
|
|
299 |
minimum=0.0,
|
300 |
maximum=1.0,
|
301 |
step=0.01,
|
302 |
-
label=
|
303 |
-
config_data.Labels_THRESHOLD_TARGET_SCORE_LABEL
|
304 |
-
if practical_subtasks.lower()
|
305 |
-
== "finding a suitable colleague by personality types"
|
306 |
-
else config_data.Labels_EQUAL_COEFFICIENT_LABEL
|
307 |
-
),
|
308 |
info=config_data.InformationMessages_VALUE_FROM_TO_INFO.format(0, 1.0),
|
309 |
show_label=True,
|
310 |
interactive=True,
|
@@ -325,7 +318,7 @@ def event_handler_practical_subtasks(
|
|
325 |
elif (
|
326 |
practical_subtasks.lower() == "car characteristics"
|
327 |
or practical_subtasks.lower() == "mobile device application categories"
|
328 |
-
or practical_subtasks.lower() == "clothing
|
329 |
):
|
330 |
if practical_subtasks.lower() == "car characteristics":
|
331 |
|
@@ -340,12 +333,12 @@ def event_handler_practical_subtasks(
|
|
340 |
config_data.Links_MDA_CATEGORIES
|
341 |
)
|
342 |
|
343 |
-
elif practical_subtasks.lower() == "clothing
|
344 |
df_correlation_coefficients = read_csv_file(config_data.Links_CLOTHING_SC)
|
345 |
|
346 |
return (
|
347 |
practical_subtasks_selected,
|
348 |
-
gr.Column(visible=
|
349 |
dropdown_create_ui(visible=False),
|
350 |
number_create_ui(visible=False),
|
351 |
number_create_ui(visible=False),
|
@@ -359,24 +352,15 @@ def event_handler_practical_subtasks(
|
|
359 |
number_create_ui(
|
360 |
value=1,
|
361 |
minimum=1,
|
362 |
-
maximum=
|
363 |
-
df_correlation_coefficients.columns.size
|
364 |
-
if practical_subtasks.lower() == "car characteristics"
|
365 |
-
else df_correlation_coefficients.columns.size - 1
|
366 |
-
),
|
367 |
step=1,
|
368 |
label=config_data.Labels_NUMBER_PRIORITY_LABEL,
|
369 |
info=config_data.InformationMessages_VALUE_FROM_TO_INFO.format(
|
370 |
-
1,
|
371 |
-
(
|
372 |
-
df_correlation_coefficients.columns.size
|
373 |
-
if practical_subtasks.lower() == "car characteristics"
|
374 |
-
else df_correlation_coefficients.columns.size - 1
|
375 |
-
),
|
376 |
),
|
377 |
show_label=True,
|
378 |
interactive=True,
|
379 |
-
visible=
|
380 |
render=True,
|
381 |
elem_classes="number-container",
|
382 |
),
|
@@ -389,7 +373,7 @@ def event_handler_practical_subtasks(
|
|
389 |
info=config_data.InformationMessages_VALUE_FROM_TO_INFO.format(1, 5),
|
390 |
show_label=True,
|
391 |
interactive=True,
|
392 |
-
visible=
|
393 |
render=True,
|
394 |
elem_classes="number-container",
|
395 |
),
|
@@ -402,7 +386,7 @@ def event_handler_practical_subtasks(
|
|
402 |
info=config_data.InformationMessages_VALUE_FROM_TO_INFO.format(0, 1.0),
|
403 |
show_label=True,
|
404 |
interactive=True,
|
405 |
-
visible=
|
406 |
render=True,
|
407 |
elem_classes="number-container",
|
408 |
),
|
|
|
219 |
elif (
|
220 |
practical_subtasks.lower() == "finding a suitable junior colleague"
|
221 |
or practical_subtasks.lower() == "finding a suitable senior colleague"
|
|
|
|
|
222 |
):
|
223 |
return (
|
224 |
practical_subtasks_selected,
|
|
|
297 |
minimum=0.0,
|
298 |
maximum=1.0,
|
299 |
step=0.01,
|
300 |
+
label=config_data.Labels_EQUAL_COEFFICIENT_LABEL,
|
|
|
|
|
|
|
|
|
|
|
301 |
info=config_data.InformationMessages_VALUE_FROM_TO_INFO.format(0, 1.0),
|
302 |
show_label=True,
|
303 |
interactive=True,
|
|
|
318 |
elif (
|
319 |
practical_subtasks.lower() == "car characteristics"
|
320 |
or practical_subtasks.lower() == "mobile device application categories"
|
321 |
+
or practical_subtasks.lower() == "clothing style correlation"
|
322 |
):
|
323 |
if practical_subtasks.lower() == "car characteristics":
|
324 |
|
|
|
333 |
config_data.Links_MDA_CATEGORIES
|
334 |
)
|
335 |
|
336 |
+
elif practical_subtasks.lower() == "clothing style correlation":
|
337 |
df_correlation_coefficients = read_csv_file(config_data.Links_CLOTHING_SC)
|
338 |
|
339 |
return (
|
340 |
practical_subtasks_selected,
|
341 |
+
gr.Column(visible=True),
|
342 |
dropdown_create_ui(visible=False),
|
343 |
number_create_ui(visible=False),
|
344 |
number_create_ui(visible=False),
|
|
|
352 |
number_create_ui(
|
353 |
value=1,
|
354 |
minimum=1,
|
355 |
+
maximum=df_correlation_coefficients.columns.size,
|
|
|
|
|
|
|
|
|
356 |
step=1,
|
357 |
label=config_data.Labels_NUMBER_PRIORITY_LABEL,
|
358 |
info=config_data.InformationMessages_VALUE_FROM_TO_INFO.format(
|
359 |
+
1, df_correlation_coefficients.columns.size
|
|
|
|
|
|
|
|
|
|
|
360 |
),
|
361 |
show_label=True,
|
362 |
interactive=True,
|
363 |
+
visible=True,
|
364 |
render=True,
|
365 |
elem_classes="number-container",
|
366 |
),
|
|
|
373 |
info=config_data.InformationMessages_VALUE_FROM_TO_INFO.format(1, 5),
|
374 |
show_label=True,
|
375 |
interactive=True,
|
376 |
+
visible=True,
|
377 |
render=True,
|
378 |
elem_classes="number-container",
|
379 |
),
|
|
|
386 |
info=config_data.InformationMessages_VALUE_FROM_TO_INFO.format(0, 1.0),
|
387 |
show_label=True,
|
388 |
interactive=True,
|
389 |
+
visible=True,
|
390 |
render=True,
|
391 |
elem_classes="number-container",
|
392 |
),
|
app/event_handlers/practical_task_sorted.py
CHANGED
@@ -37,13 +37,7 @@ def event_handler_practical_task_sorted(
|
|
37 |
label = ""
|
38 |
label += " " + config_data.Dataframes_PT_SCORES[0][0]
|
39 |
|
40 |
-
|
41 |
-
is_filename = Path(files[person_id]).name in video_metadata
|
42 |
-
except IndexError:
|
43 |
-
is_filename = False
|
44 |
-
person_id = 0
|
45 |
-
|
46 |
-
if is_filename:
|
47 |
person_metadata_list = video_metadata[Path(files[person_id]).name]
|
48 |
|
49 |
person_metadata = (
|
|
|
37 |
label = ""
|
38 |
label += " " + config_data.Dataframes_PT_SCORES[0][0]
|
39 |
|
40 |
+
if Path(files[person_id]).name in video_metadata:
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
person_metadata_list = video_metadata[Path(files[person_id]).name]
|
42 |
|
43 |
person_metadata = (
|
app/event_handlers/practical_tasks.py
CHANGED
@@ -21,7 +21,7 @@ def event_handler_practical_tasks(
|
|
21 |
supported_practical_tasks_ren = supported_practical_tasks
|
22 |
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
23 |
rename_map = {
|
24 |
-
"Ranking potential candidates by professional responsibilities": "
|
25 |
"Ранжирование потенциальных кандидатов по профессиональным обязанностям": "Определить профессиональные возможности",
|
26 |
}
|
27 |
|
|
|
21 |
supported_practical_tasks_ren = supported_practical_tasks
|
22 |
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
23 |
rename_map = {
|
24 |
+
"Ranking potential candidates by professional responsibilities": "Determine professional possibilities",
|
25 |
"Ранжирование потенциальных кандидатов по профессиональным обязанностям": "Определить профессиональные возможности",
|
26 |
}
|
27 |
|
app/event_handlers/switching_modes.py
CHANGED
@@ -31,16 +31,6 @@ def event_handler_switching_modes(language, type_modes):
|
|
31 |
first_practical_task = next(iter(supported_practical_tasks[lang_id]))
|
32 |
|
33 |
if type_modes == config_data.Settings_TYPE_MODES[0]:
|
34 |
-
notifications = html_message(
|
35 |
-
(
|
36 |
-
config_data.InformationMessages_NOTI_VIDEOS[lang_id].split("(")[0]
|
37 |
-
if lang_id == 0
|
38 |
-
else config_data.InformationMessages_NOTI_VIDEOS[lang_id]
|
39 |
-
),
|
40 |
-
False,
|
41 |
-
True,
|
42 |
-
"notifications",
|
43 |
-
)
|
44 |
files_ui = files_create_ui(
|
45 |
label="{} ({})".format(
|
46 |
config_data.OtherMessages_VIDEO_FILES[lang_id],
|
@@ -63,21 +53,7 @@ def event_handler_switching_modes(language, type_modes):
|
|
63 |
choices=config_data.Settings_TYPE_MODES,
|
64 |
value=config_data.Settings_TYPE_MODES[1],
|
65 |
)
|
66 |
-
examples = button(
|
67 |
-
config_data.OtherMessages_EXAMPLE_APP[lang_id],
|
68 |
-
True,
|
69 |
-
1,
|
70 |
-
"./images/examples.ico",
|
71 |
-
True,
|
72 |
-
"examples_oceanai",
|
73 |
-
)
|
74 |
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
75 |
-
notifications = html_message(
|
76 |
-
config_data.InformationMessages_NOTI_VIDEOS[lang_id],
|
77 |
-
False,
|
78 |
-
True,
|
79 |
-
"notifications",
|
80 |
-
)
|
81 |
files_ui = files_create_ui(
|
82 |
label="{} ({})".format(
|
83 |
config_data.OtherMessages_VIDEO_FILES[lang_id],
|
@@ -98,23 +74,19 @@ def event_handler_switching_modes(language, type_modes):
|
|
98 |
choices=config_data.Settings_TYPE_MODES,
|
99 |
value=config_data.Settings_TYPE_MODES[0],
|
100 |
)
|
101 |
-
examples = button(
|
102 |
-
config_data.OtherMessages_EXAMPLES_APP[lang_id],
|
103 |
-
True,
|
104 |
-
1,
|
105 |
-
"./images/examples.ico",
|
106 |
-
True,
|
107 |
-
"examples_oceanai",
|
108 |
-
)
|
109 |
|
110 |
return (
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
112 |
files_ui,
|
113 |
webcam,
|
114 |
switching_modes,
|
115 |
type_modes_ui,
|
116 |
video_create_ui(),
|
117 |
-
examples,
|
118 |
button(
|
119 |
config_data.OtherMessages_CALCULATE_PT_SCORES[lang_id],
|
120 |
False,
|
|
|
31 |
first_practical_task = next(iter(supported_practical_tasks[lang_id]))
|
32 |
|
33 |
if type_modes == config_data.Settings_TYPE_MODES[0]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
files_ui = files_create_ui(
|
35 |
label="{} ({})".format(
|
36 |
config_data.OtherMessages_VIDEO_FILES[lang_id],
|
|
|
53 |
choices=config_data.Settings_TYPE_MODES,
|
54 |
value=config_data.Settings_TYPE_MODES[1],
|
55 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
elif type_modes == config_data.Settings_TYPE_MODES[1]:
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
files_ui = files_create_ui(
|
58 |
label="{} ({})".format(
|
59 |
config_data.OtherMessages_VIDEO_FILES[lang_id],
|
|
|
74 |
choices=config_data.Settings_TYPE_MODES,
|
75 |
value=config_data.Settings_TYPE_MODES[0],
|
76 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
return (
|
79 |
+
html_message(
|
80 |
+
config_data.InformationMessages_NOTI_VIDEOS[lang_id],
|
81 |
+
False,
|
82 |
+
True,
|
83 |
+
"notifications",
|
84 |
+
),
|
85 |
files_ui,
|
86 |
webcam,
|
87 |
switching_modes,
|
88 |
type_modes_ui,
|
89 |
video_create_ui(),
|
|
|
90 |
button(
|
91 |
config_data.OtherMessages_CALCULATE_PT_SCORES[lang_id],
|
92 |
False,
|
app/event_handlers/webcam.py
CHANGED
@@ -20,11 +20,7 @@ def event_handler_webcam(language, webcam, pt_scores):
|
|
20 |
if not webcam:
|
21 |
return (
|
22 |
html_message(
|
23 |
-
|
24 |
-
config_data.InformationMessages_NOTI_VIDEOS[lang_id].split("(")[0]
|
25 |
-
if lang_id == 0
|
26 |
-
else config_data.InformationMessages_NOTI_VIDEOS[lang_id]
|
27 |
-
),
|
28 |
False,
|
29 |
True,
|
30 |
"notifications",
|
|
|
20 |
if not webcam:
|
21 |
return (
|
22 |
html_message(
|
23 |
+
config_data.InformationMessages_NOTI_VIDEOS[lang_id],
|
|
|
|
|
|
|
|
|
24 |
False,
|
25 |
True,
|
26 |
"notifications",
|
app/tabs.py
CHANGED
@@ -223,7 +223,7 @@ def app_tab():
|
|
223 |
)
|
224 |
|
225 |
threshold_professional_skills = number_create_ui(
|
226 |
-
value=0.
|
227 |
minimum=0.0,
|
228 |
maximum=1.0,
|
229 |
step=0.01,
|
|
|
223 |
)
|
224 |
|
225 |
threshold_professional_skills = number_create_ui(
|
226 |
+
value=0.45,
|
227 |
minimum=0.0,
|
228 |
maximum=1.0,
|
229 |
step=0.01,
|
app/utils.py
CHANGED
@@ -49,7 +49,7 @@ def read_csv_file(file_path, drop_columns=[]):
|
|
49 |
|
50 |
def round_numeric_values(x):
|
51 |
if isinstance(x, (int, float)):
|
52 |
-
return round(x,
|
53 |
|
54 |
return x
|
55 |
|
|
|
49 |
|
50 |
def round_numeric_values(x):
|
51 |
if isinstance(x, (int, float)):
|
52 |
+
return round(x, 3)
|
53 |
|
54 |
return x
|
55 |
|
config.toml
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
[AppSettings]
|
2 |
-
APP_VERSION = "0.
|
3 |
SERVER_NAME = "127.0.0.1"
|
4 |
PORT = 7860
|
5 |
CSS_PATH = "app.css"
|
@@ -44,7 +44,6 @@ CALCULATE_PT_SCORES_ERR = [
|
|
44 |
CALCULATE_PRACTICAL_TASK = "Solving practical task"
|
45 |
CLEAR_APP = ["Clear", "Сброс"]
|
46 |
EXAMPLES_APP = ["Examples", "Примеры"]
|
47 |
-
EXAMPLE_APP = ["Example", "Пример"]
|
48 |
EXPORT_PT_SCORES = [
|
49 |
"Export Big Five personality traits to a CSV file",
|
50 |
"Экспорт показателей Большой пятерки персональных качеств личности человека в CSV файл"]
|
@@ -54,7 +53,7 @@ EXPORT_WT = "Export ranking effective work teams results to a CSV file"
|
|
54 |
EXPORT_CP = "Export consumer preferences for industrial goods results to a CSV file"
|
55 |
EXPORT_MBTI = "Export ranking personality type results to a CSV file"
|
56 |
NOTI_CALCULATE = ["You can calculate Big Five personality traits scores", "Вы можете рассчитать показатели Большой пятерки персональных качеств личности человека"]
|
57 |
-
SWITCHEHG_MODES_ONLINE = ["Webcam", "
|
58 |
SWITCHEHG_MODES_OFFLINE = ["Video Files", "Видеофайлы"]
|
59 |
|
60 |
[Labels]
|
@@ -72,7 +71,6 @@ TARGET_SCORE_EXT_LABEL = "Extraversion target score"
|
|
72 |
TARGET_SCORE_AGR_LABEL = "Agreeableness target score"
|
73 |
TARGET_SCORE_NNEU_LABEL = "Non-Neuroticism target score"
|
74 |
EQUAL_COEFFICIENT_LABEL = "Equal coefficient"
|
75 |
-
THRESHOLD_TARGET_SCORE_LABEL = "Polarity traits threshold"
|
76 |
NUMBER_PRIORITY_LABEL = "Priority number"
|
77 |
NUMBER_IMPORTANCE_TRAITS_LABEL = "Importance traits number"
|
78 |
NUMBER_IMPORTANCE_OPE_LABEL = "Openness weight"
|
|
|
1 |
[AppSettings]
|
2 |
+
APP_VERSION = "0.10.4"
|
3 |
SERVER_NAME = "127.0.0.1"
|
4 |
PORT = 7860
|
5 |
CSS_PATH = "app.css"
|
|
|
44 |
CALCULATE_PRACTICAL_TASK = "Solving practical task"
|
45 |
CLEAR_APP = ["Clear", "Сброс"]
|
46 |
EXAMPLES_APP = ["Examples", "Примеры"]
|
|
|
47 |
EXPORT_PT_SCORES = [
|
48 |
"Export Big Five personality traits to a CSV file",
|
49 |
"Экспорт показателей Большой пятерки персональных качеств личности человека в CSV файл"]
|
|
|
53 |
EXPORT_CP = "Export consumer preferences for industrial goods results to a CSV file"
|
54 |
EXPORT_MBTI = "Export ranking personality type results to a CSV file"
|
55 |
NOTI_CALCULATE = ["You can calculate Big Five personality traits scores", "Вы можете рассчитать показатели Большой пятерки персональных качеств личности человека"]
|
56 |
+
SWITCHEHG_MODES_ONLINE = ["Webcam", "Веб камера"]
|
57 |
SWITCHEHG_MODES_OFFLINE = ["Video Files", "Видеофайлы"]
|
58 |
|
59 |
[Labels]
|
|
|
71 |
TARGET_SCORE_AGR_LABEL = "Agreeableness target score"
|
72 |
TARGET_SCORE_NNEU_LABEL = "Non-Neuroticism target score"
|
73 |
EQUAL_COEFFICIENT_LABEL = "Equal coefficient"
|
|
|
74 |
NUMBER_PRIORITY_LABEL = "Priority number"
|
75 |
NUMBER_IMPORTANCE_TRAITS_LABEL = "Importance traits number"
|
76 |
NUMBER_IMPORTANCE_OPE_LABEL = "Openness weight"
|
practical_tasks_en.yaml
CHANGED
@@ -7,9 +7,8 @@
|
|
7 |
subtasks:
|
8 |
- "Finding a suitable junior colleague"
|
9 |
- "Finding a suitable senior colleague"
|
10 |
-
- "Finding a suitable colleague by personality types"
|
11 |
- task: "Predicting consumer preferences for industrial goods"
|
12 |
subtasks:
|
13 |
- "Car characteristics"
|
14 |
- "Mobile device application categories"
|
15 |
-
- "Clothing
|
|
|
7 |
subtasks:
|
8 |
- "Finding a suitable junior colleague"
|
9 |
- "Finding a suitable senior colleague"
|
|
|
10 |
- task: "Predicting consumer preferences for industrial goods"
|
11 |
subtasks:
|
12 |
- "Car characteristics"
|
13 |
- "Mobile device application categories"
|
14 |
+
- "Clothing style correlation"
|
practical_tasks_ru.yaml
CHANGED
@@ -7,7 +7,6 @@
|
|
7 |
subtasks:
|
8 |
- "Поиск подходящего младшего коллеги"
|
9 |
- "Поиск подходящего старшего коллеги"
|
10 |
-
- "Поиск подходящего коллеги по типам личности"
|
11 |
- task: "Прогнозирование потребительских предпочтений в отношении промышленных товаров"
|
12 |
subtasks:
|
13 |
- "Характеристики автомобиля"
|
|
|
7 |
subtasks:
|
8 |
- "Поиск подходящего младшего коллеги"
|
9 |
- "Поиск подходящего старшего коллеги"
|
|
|
10 |
- task: "Прогнозирование потребительских предпочтений в отношении промышленных товаров"
|
11 |
subtasks:
|
12 |
- "Характеристики автомобиля"
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
gradio==5.
|
2 |
PyYAML==6.0.2
|
3 |
toml==0.10.2
|
4 |
oceanai==1.0.0a46
|
|
|
1 |
+
gradio==5.7.1
|
2 |
PyYAML==6.0.2
|
3 |
toml==0.10.2
|
4 |
oceanai==1.0.0a46
|