File size: 10,073 Bytes
088e816
 
76603df
 
 
 
 
 
 
088e816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76603df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
088e816
6b43c86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
088e816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d14568c
088e816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d14568c
 
088e816
 
 
 
 
 
 
 
 
 
 
 
 
 
d14568c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5c9c65
12c9afe
 
d14568c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
088e816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

import re
from collections import defaultdict
from climateqa.utils import get_image_from_azure_blob_storage
from climateqa.engine.chains.prompts import audience_prompts
from PIL import Image
from io import BytesIO
import base64


def make_pairs(lst):
    """from a list of even lenght, make tupple pairs"""
    return [(lst[i], lst[i + 1]) for i in range(0, len(lst), 2)]


def serialize_docs(docs):
    new_docs = []
    for doc in docs:
        new_doc = {}
        new_doc["page_content"] = doc.page_content
        new_doc["metadata"] = doc.metadata
        new_docs.append(new_doc)
    return new_docs



def parse_output_llm_with_sources(output):
    # Split the content into a list of text and "[Doc X]" references
    content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
    parts = []
    for part in content_parts:
        if part.startswith("Doc"):
            subparts = part.split(",")
            subparts = [subpart.lower().replace("doc","").strip() for subpart in subparts]
            subparts = [f"""<a href="#doc{subpart}" class="a-doc-ref" target="_self"><span class='doc-ref'><sup>{subpart}</sup></span></a>""" for subpart in subparts]
            parts.append("".join(subparts))
        else:
            parts.append(part)
    content_parts = "".join(parts)
    return content_parts

def process_figures(docs):
    gallery=[]
    used_figures =[]
    figures = '<div class="figures-container"><p></p> </div>'
    docs_figures = [d for d in docs if d.metadata["chunk_type"] == "image"]
    for i, doc in enumerate(docs_figures):
        if doc.metadata["chunk_type"] == "image":
            if doc.metadata["figure_code"] != "N/A":
                title = f"{doc.metadata['figure_code']} - {doc.metadata['short_name']}"
            else:
                title = f"{doc.metadata['short_name']}"
            
            
            if title not in used_figures:
                used_figures.append(title)
                try:
                    key = f"Image {i+1}"

                    image_path = doc.metadata["image_path"].split("documents/")[1]
                    img = get_image_from_azure_blob_storage(image_path)

                    # Convert the image to a byte buffer
                    buffered = BytesIO()
                    max_image_length = 500
                    img_resized = img.resize((max_image_length, int(max_image_length * img.size[1]/img.size[0])))
                    img_resized.save(buffered, format="PNG")

                    img_str = base64.b64encode(buffered.getvalue()).decode()
                    
                    figures = figures + make_html_figure_sources(doc, i, img_str)  
                    gallery.append(img)
                except Exception as e:
                    print(f"Skipped adding image {i} because of {e}")

    return figures, gallery


def generate_html_graphs(graphs):
    # Organize graphs by category
    categories = defaultdict(list)
    for graph in graphs:
        category = graph['metadata']['category']
        categories[category].append(graph['embedding'])

    # Begin constructing the HTML
    html_code = '''
                <!DOCTYPE html>
                <html lang="en">
                <head>
                    <meta charset="UTF-8">
                    <meta name="viewport" content="width=device-width, initial-scale=1.0">
                    <title>Graphs by Category</title>
                    <style>
                        .tab-content {
                            display: none;
                        }
                        .tab-content.active {
                            display: block;
                        }
                        .tabs {
                            margin-bottom: 20px;
                        }
                        .tab-button {
                            background-color: #ddd;
                            border: none;
                            padding: 10px 20px;
                            cursor: pointer;
                            margin-right: 5px;
                        }
                        .tab-button.active {
                            background-color: #ccc;
                        }
                    </style>
                    <script>
                        function showTab(tabId) {
                            var contents = document.getElementsByClassName('tab-content');
                            var buttons = document.getElementsByClassName('tab-button');
                            for (var i = 0; i < contents.length; i++) {
                                contents[i].classList.remove('active');
                                buttons[i].classList.remove('active');
                            }
                            document.getElementById(tabId).classList.add('active');
                            document.querySelector('button[data-tab="'+tabId+'"]').classList.add('active');
                        }
                    </script>
                </head>
                <body>
                    <div class="tabs">
                '''

    # Add buttons for each category
    for i, category in enumerate(categories.keys()):
        active_class = 'active' if i == 0 else ''
        html_code += f'<button class="tab-button {active_class}" onclick="showTab(\'tab-{i}\')" data-tab="tab-{i}">{category}</button>'

    html_code += '</div>'

    # Add content for each category
    for i, (category, embeds) in enumerate(categories.items()):
        active_class = 'active' if i == 0 else ''
        html_code += f'<div id="tab-{i}" class="tab-content {active_class}">'
        for embed in embeds:
            html_code += embed
        html_code += '</div>'

    html_code += '''
                </body>
                </html>
                '''

    return html_code



def make_html_source(source,i):
    meta = source.metadata
    # content = source.page_content.split(":",1)[1].strip()
    content = source.page_content.strip()

    toc_levels = []
    for j in range(2):
        level = meta[f"toc_level{j}"]
        if level != "N/A":
            toc_levels.append(level)
        else:
            break
    toc_levels = " > ".join(toc_levels)

    if len(toc_levels) > 0:
        name = f"<b>{toc_levels}</b><br/>{meta['name']}"
    else:
        name = meta['name']

    score = meta['reranking_score']
    if score > 0.8:
        color = "score-green"
    elif score > 0.5:
        color = "score-orange"
    else:
        color = "score-red"

    relevancy_score = f"<p class=relevancy-score>Relevancy score: <span class='{color}'>{score:.1%}</span></p>"

    if meta["chunk_type"] == "text":

        card = f"""
    <div class="card" id="doc{i}">
        <div class="card-content">
            <h2>Doc {i} - {meta['short_name']} - Page {int(meta['page_number'])}</h2>
            <p>{content}</p>
            {relevancy_score}
        </div>
        <div class="card-footer">
            <span>{name}</span>
            <a href="{meta['url']}#page={int(meta['page_number'])}" target="_blank" class="pdf-link">
                <span role="img" aria-label="Open PDF">πŸ”—</span>
            </a>
        </div>
    </div>
    """
    
    else:

        if meta["figure_code"] != "N/A":
            title = f"{meta['figure_code']} - {meta['short_name']}"
        else:
            title = f"{meta['short_name']}"

        card = f"""
    <div class="card card-image">
        <div class="card-content">
            <h2>Image {i} - {title} - Page {int(meta['page_number'])}</h2>
            <p class='ai-generated'>AI-generated description</p>
            <p>{content}</p>

            {relevancy_score}
        </div>
        <div class="card-footer">
            <span>{name}</span>
            <a href="{meta['url']}#page={int(meta['page_number'])}" target="_blank" class="pdf-link">
                <span role="img" aria-label="Open PDF">πŸ”—</span>
            </a>
        </div>
    </div>
    """
        
    return card


def make_html_figure_sources(source,i,img_str):
    meta = source.metadata
    content = source.page_content.strip()
    
    score = meta['reranking_score']
    if score > 0.8:
        color = "score-green"
    elif score > 0.5:
        color = "score-orange"
    else:
        color = "score-red"
        
    toc_levels = []
    if len(toc_levels) > 0:
        name = f"<b>{toc_levels}</b><br/>{meta['name']}"
    else:
        name = meta['name']
        
    relevancy_score = f"<p class=relevancy-score>Relevancy score: <span class='{color}'>{score:.1%}</span></p>"

    if meta["figure_code"] != "N/A":
        title = f"{meta['figure_code']} - {meta['short_name']}"
    else:
        title = f"{meta['short_name']}"

    card = f"""
    <div class="card card-image">
        <div class="card-content">
            <h2>Image {i} - {title} - Page {int(meta['page_number'])}</h2>
            <img src="data:image/png;base64, { img_str }" alt="Alt text" />
            <p class='ai-generated'>AI-generated description</p>

            <p>{content}</p>

            {relevancy_score}
        </div>
        <div class="card-footer">
            <span>{name}</span>
            <a href="{meta['url']}#page={int(meta['page_number'])}" target="_blank" class="pdf-link">
                <span role="img" aria-label="Open PDF">πŸ”—</span>
            </a>
        </div>
    </div>
    """
    return card

    

def make_toolbox(tool_name,description = "",checked = False,elem_id = "toggle"):

    if checked:
        span = "<span class='checkmark'>&#10003;</span>"
    else:
        span = "<span class='loader'></span>"

#     toolbox = f"""
# <div class="dropdown">
# <label for="{elem_id}" class="dropdown-toggle">
#     {span}
#     {tool_name}
#     <span class="caret"></span>
# </label>
# <input type="checkbox" id="{elem_id}" hidden/>
# <div class="dropdown-content">
#     <p>{description}</p>
# </div>
# </div>
# """
    

    toolbox = f"""
<div class="dropdown">
<label for="{elem_id}" class="dropdown-toggle">
    {span}
    {tool_name}
</label>
</div>
"""

    return toolbox