File size: 11,212 Bytes
481f3b1
 
 
 
 
 
6b43c86
088e816
481f3b1
6b43c86
481f3b1
088e816
 
481f3b1
 
088e816
481f3b1
088e816
99e91d8
088e816
ccd4b9e
 
 
481f3b1
 
 
 
 
 
 
 
6b43c86
481f3b1
99e91d8
 
481f3b1
088e816
99e91d8
 
 
 
481f3b1
6b43c86
 
481f3b1
72edd2d
 
088e816
72edd2d
 
088e816
 
 
 
 
99e91d8
 
088e816
 
 
6b43c86
 
 
 
 
 
 
088e816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b43c86
088e816
 
 
 
 
 
 
 
ccd4b9e
 
6b43c86
 
 
 
 
088e816
 
6b43c86
088e816
 
99e91d8
088e816
 
6b43c86
 
088e816
6b43c86
ccd4b9e
6b43c86
 
 
 
 
 
 
 
088e816
 
6b43c86
088e816
 
 
 
 
99e91d8
088e816
 
6b43c86
 
 
 
 
 
088e816
 
 
 
 
 
 
99e91d8
 
 
 
 
 
088e816
 
 
 
 
6b43c86
088e816
6b43c86
 
 
 
088e816
 
6b43c86
 
ccd4b9e
6b43c86
 
 
 
 
 
 
088e816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b43c86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import sys
import os
from contextlib import contextmanager

from langchain.schema import Document
from langgraph.graph import END, StateGraph
from langchain_core.runnables.graph import CurveStyle, MermaidDrawMethod

from typing_extensions import TypedDict
from typing import List, Dict

from IPython.display import display, HTML, Image

from .chains.answer_chitchat import make_chitchat_node
from .chains.answer_ai_impact import make_ai_impact_node
from .chains.query_transformation import make_query_transform_node
from .chains.translation import make_translation_node
from .chains.intent_categorization import make_intent_categorization_node
from .chains.retrieve_documents import make_retriever_node
from .chains.answer_rag import make_rag_node
from .chains.graph_retriever import make_graph_retriever_node
from .chains.chitchat_categorization import make_chitchat_intent_categorization_node
from .chains.set_defaults import set_defaults

class GraphState(TypedDict):
    """
    Represents the state of our graph.
    """
    user_input : str
    language : str
    intent : str
    search_graphs_chitchat : bool
    query: str
    remaining_questions : List[dict]
    n_questions : int
    answer: str
    audience: str = "experts"
    sources_input: List[str] = ["IPCC","IPBES"]
    sources_auto: bool = True
    min_year: int = 1960
    max_year: int = None
    documents: List[Document]
    recommended_content : List[Document]
    # graphs_returned: Dict[str,str]

def search(state): #TODO
    return state

def answer_search(state):#TODO
    return state

def route_intent(state):
    intent = state["intent"]
    if intent in ["chitchat","esg"]:
        return "answer_chitchat"
    # elif intent == "ai_impact":
    #     return "answer_ai_impact"
    else:
        # Search route
        return "search"

def chitchat_route_intent(state):
    intent = state["search_graphs_chitchat"]
    if intent is True:
        return "retrieve_graphs_chitchat"
    elif intent is False:
        return END
    
def route_translation(state):
    if state["language"].lower() == "english":
        return "transform_query"
    else:
        return "translate_query"
    
def route_based_on_relevant_docs(state,threshold_docs=0.2):
    docs = [x for x in state["documents"] if x.metadata["reranking_score"] > threshold_docs]
    if len(docs) > 0:
        return "answer_rag"
    else:
        return "answer_rag_no_docs"
    

def make_id_dict(values):
    return {k:k for k in values}

def make_graph_agent(llm, vectorstore_ipcc, vectorstore_graphs, reranker, threshold_docs=0.2):
    
    workflow = StateGraph(GraphState)

    # Define the node functions
    categorize_intent = make_intent_categorization_node(llm)
    transform_query = make_query_transform_node(llm)
    translate_query = make_translation_node(llm)
    answer_chitchat = make_chitchat_node(llm)
    # answer_ai_impact = make_ai_impact_node(llm)
    retrieve_documents = make_retriever_node(vectorstore_ipcc, reranker, llm)
    retrieve_graphs = make_graph_retriever_node(vectorstore_graphs, reranker)
    # answer_rag_graph = make_rag_graph_node(llm)
    answer_rag = make_rag_node(llm, with_docs=True)
    answer_rag_no_docs = make_rag_node(llm, with_docs=False)
    chitchat_categorize_intent = make_chitchat_intent_categorization_node(llm)

    # Define the nodes
    workflow.add_node("set_defaults", set_defaults)
    workflow.add_node("categorize_intent", categorize_intent)
    workflow.add_node("search", search)
    workflow.add_node("answer_search", answer_search)
    workflow.add_node("transform_query", transform_query)
    workflow.add_node("translate_query", translate_query)
    # workflow.add_node("transform_query_ai", transform_query)
    # workflow.add_node("translate_query_ai", translate_query)
    workflow.add_node("answer_chitchat", answer_chitchat)
    workflow.add_node("chitchat_categorize_intent", chitchat_categorize_intent)
    # workflow.add_node("answer_ai_impact", answer_ai_impact)
    workflow.add_node("retrieve_graphs", retrieve_graphs)
    workflow.add_node("retrieve_graphs_chitchat", retrieve_graphs)
    # workflow.add_node("retrieve_graphs_ai", retrieve_graphs)
    # workflow.add_node("answer_rag_graph", answer_rag_graph)
    # workflow.add_node("answer_rag_graph_ai", answer_rag_graph)
    workflow.add_node("retrieve_documents", retrieve_documents)
    workflow.add_node("answer_rag", answer_rag)
    workflow.add_node("answer_rag_no_docs", answer_rag_no_docs)

    # Entry point
    workflow.set_entry_point("set_defaults")

    # CONDITIONAL EDGES
    workflow.add_conditional_edges(
        "categorize_intent",
        route_intent,
        make_id_dict(["answer_chitchat","search"])
    )

    workflow.add_conditional_edges(
        "chitchat_categorize_intent",
        chitchat_route_intent,
        make_id_dict(["retrieve_graphs_chitchat", END])
    )

    workflow.add_conditional_edges(
        "search",
        route_translation,
        make_id_dict(["translate_query","transform_query"])
    )
    workflow.add_conditional_edges(
        "retrieve_documents",
        lambda state : "retrieve_documents" if len(state["remaining_questions"]) > 0 else "answer_search",
        make_id_dict(["retrieve_documents","answer_search"])
    )

    workflow.add_conditional_edges(
        "answer_search",
        lambda x : route_based_on_relevant_docs(x,threshold_docs=threshold_docs),
        make_id_dict(["answer_rag","answer_rag_no_docs"])
    )

    # Define the edges
    workflow.add_edge("set_defaults", "categorize_intent")
    workflow.add_edge("translate_query", "transform_query")
    workflow.add_edge("transform_query", "retrieve_graphs")
    # workflow.add_edge("retrieve_graphs", "answer_rag_graph")
    workflow.add_edge("retrieve_graphs", "retrieve_documents")
    # workflow.add_edge("answer_rag_graph", "retrieve_documents")
    workflow.add_edge("answer_rag", END)
    workflow.add_edge("answer_rag_no_docs", END)
    workflow.add_edge("answer_chitchat", "chitchat_categorize_intent")
    # workflow.add_edge("answer_chitchat", END)
    # workflow.add_edge("answer_ai_impact", END)
    workflow.add_edge("retrieve_graphs_chitchat", END)
    # workflow.add_edge("answer_ai_impact", "translate_query_ai")
    # workflow.add_edge("translate_query_ai", "transform_query_ai")
    # workflow.add_edge("transform_query_ai", "retrieve_graphs_ai")
    # workflow.add_edge("retrieve_graphs_ai", "answer_rag_graph_ai")
    # workflow.add_edge("answer_rag_graph_ai", END)
    # workflow.add_edge("retrieve_graphs_ai", END)

    # Compile
    app = workflow.compile()
    return app




def display_graph(app):

    display(
        Image(
            app.get_graph(xray = True).draw_mermaid_png(
                draw_method=MermaidDrawMethod.API,
            )
        )
    )

# import sys
# import os
# from contextlib import contextmanager

# from langchain.schema import Document
# from langgraph.graph import END, StateGraph
# from langchain_core.runnables.graph import CurveStyle, NodeColors, MermaidDrawMethod

# from typing_extensions import TypedDict
# from typing import List

# from IPython.display import display, HTML, Image

# from .chains.answer_chitchat import make_chitchat_node
# from .chains.answer_ai_impact import make_ai_impact_node
# from .chains.query_transformation import make_query_transform_node
# from .chains.translation import make_translation_node
# from .chains.intent_categorization import make_intent_categorization_node
# from .chains.retriever import make_retriever_node
# from .chains.answer_rag import make_rag_node


# class GraphState(TypedDict):
#     """
#     Represents the state of our graph.
#     """
#     user_input : str
#     language : str
#     intent : str
#     query: str
#     questions : List[dict]
#     answer: str
#     audience: str = "experts"
#     sources_input: List[str] = ["auto"]
#     documents: List[Document]

# def search(state):
#     return {}

# def route_intent(state):
#     intent = state["intent"]
#     if intent in ["chitchat","esg"]:
#         return "answer_chitchat"
#     elif intent == "ai_impact":
#         return "answer_ai_impact"
#     else:
#         # Search route
#         return "search"
    
# def route_translation(state):
#     if state["language"].lower() == "english":
#         return "transform_query"
#     else:
#         return "translate_query"
    
# def route_based_on_relevant_docs(state,threshold_docs=0.2):
#     docs = [x for x in state["documents"] if x.metadata["reranking_score"] > threshold_docs]
#     if len(docs) > 0:
#         return "answer_rag"
#     else:
#         return "answer_rag_no_docs"
    

# def make_id_dict(values):
#     return {k:k for k in values}

# def make_graph_agent(llm,vectorstore,reranker,threshold_docs = 0.2):
    
#     workflow = StateGraph(GraphState)

#     # Define the node functions
#     categorize_intent = make_intent_categorization_node(llm)
#     transform_query = make_query_transform_node(llm)
#     translate_query = make_translation_node(llm)
#     answer_chitchat = make_chitchat_node(llm)
#     answer_ai_impact = make_ai_impact_node(llm)
#     retrieve_documents = make_retriever_node(vectorstore,reranker)
#     answer_rag = make_rag_node(llm,with_docs=True)
#     answer_rag_no_docs = make_rag_node(llm,with_docs=False)

#     # Define the nodes
#     workflow.add_node("categorize_intent", categorize_intent)
#     workflow.add_node("search", search)
#     workflow.add_node("transform_query", transform_query)
#     workflow.add_node("translate_query", translate_query)
#     workflow.add_node("answer_chitchat", answer_chitchat)
#     workflow.add_node("answer_ai_impact", answer_ai_impact)
#     workflow.add_node("retrieve_documents",retrieve_documents)
#     workflow.add_node("answer_rag",answer_rag)
#     workflow.add_node("answer_rag_no_docs",answer_rag_no_docs)

#     # Entry point
#     workflow.set_entry_point("categorize_intent")

#     # CONDITIONAL EDGES
#     workflow.add_conditional_edges(
#         "categorize_intent",
#         route_intent,
#         make_id_dict(["answer_chitchat","answer_ai_impact","search"])
#     )

#     workflow.add_conditional_edges(
#         "search",
#         route_translation,
#         make_id_dict(["translate_query","transform_query"])
#     )

#     workflow.add_conditional_edges(
#         "retrieve_documents",
#         lambda x : route_based_on_relevant_docs(x,threshold_docs=threshold_docs),
#         make_id_dict(["answer_rag","answer_rag_no_docs"])
#     )

#     # Define the edges
#     workflow.add_edge("translate_query", "transform_query")
#     workflow.add_edge("transform_query", "retrieve_documents")
#     workflow.add_edge("retrieve_documents", "answer_rag")
#     workflow.add_edge("answer_rag", END)
#     workflow.add_edge("answer_rag_no_docs", END)
#     workflow.add_edge("answer_chitchat", END)
#     workflow.add_edge("answer_ai_impact", END)

#     # Compile
#     app = workflow.compile()
#     return app




# def display_graph(app):

#     display(
#         Image(
#             app.get_graph(xray = True).draw_mermaid_png(
#                 draw_method=MermaidDrawMethod.API,
#             )
#         )
#     )