File size: 6,492 Bytes
a5686cb a4595fc a5686cb 71ab0a8 19a9d09 fa7f0c5 669d503 99e2b1f fdf1622 99e2b1f a4595fc 99e2b1f fdf1622 669d503 a4595fc fdf1622 99e2b1f f3d1657 a4595fc bf93486 a4595fc bf93486 fdf1622 a4595fc fdf1622 a5686cb fdf1622 a5686cb dc1d7e6 fdf1622 bf93486 f3d1657 adfbbbe 19a9d09 af9539a dc1d7e6 af9539a c1646ce 19a9d09 af9539a a4595fc af9539a fdf1622 af9539a a4595fc af9539a fdf1622 19a9d09 dc1d7e6 19a9d09 af9539a a4595fc a5686cb af9539a 19a9d09 4dd3ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import EmbeddingRetriever
import openai
import os
from utils import (
make_pairs,
set_openai_api_key,
get_random_string,
)
system_template = {"role": "system", "content": os.environ["content"]}
retrieve_all = EmbeddingRetriever(
document_store=FAISSDocumentStore.load(
index_path="./documents/climate_gpt.faiss",
config_path="./documents/climate_gpt.json",
),
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
model_format="sentence_transformers",
)
retrieve_giec = EmbeddingRetriever(
document_store=FAISSDocumentStore.load(
index_path="./documents/climate_gpt_only_giec.faiss",
config_path="./documents/climate_gpt_only_giec.json",
),
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
model_format="sentence_transformers",
)
def chat(query: str, history: list = [system_template], report_type="All available", threshold=0.56):
retriever = retrieve_all if report_type == "All available" else retrieve_giec
docs = retriever.retrieve(query=query, top_k=10)
messages = history + [{"role": "user", "content": query}]
sources = "\n\n".join(
f"doc {i}: {d.meta['file_name']} page {d.meta['page_number']}\n{d.content}"
for i, d in enumerate(docs, 1)
if d.score > threshold
)
if sources:
messages.append({"role": "system", "content": f"{os.environ['sources']}\n\n{sources}"})
else:
messages.append({"role": "system", "content": "no relevant document available."})
sources = "No environmental report was used to provide this answer."
response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages, temperature=0.2,)["choices"][0][
"message"
]["content"]
complete_response = ""
for chunk in response:
complete_response += chunk["choices"][0]["delta"].get("content", "")
messages[-1] = {"role": "assistant", "content": complete_response}
gradio_format = make_pairs([a["content"] for a in messages[1:]])
yield gradio_format, messages, sources
def test(feed: str):
print(feed)
def reset_textbox():
return gr.update(value="")
# Gradio
css_code = ".gradio-container {background-image: url('file=background.png');background-position: top right}"
with gr.Blocks(title="π ClimateGPT Ekimetrics", css=css_code) as demo:
openai.api_key = os.environ["api_key"]
user_id = gr.State([get_random_string(10)])
with gr.Tab("App"):
gr.Markdown("# Welcome to Climate GPT π !")
gr.Markdown(
""" Climate GPT is an interactive exploration tool designed to help you easily find relevant information based on of Environmental reports such as IPCCs and other environmental reports.
\n **How does it work:** This Chatbot is a combination of two technologies. FAISS search applied to a vast amount of scientific climate reports and TurboGPT to generate human-like text from the part of the document extracted from the database.
\n β οΈ Warning: Always refer to the source to ensure the validity of the information communicated.
"""
)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot()
state = gr.State([system_template])
with gr.Row():
ask = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter",
sample_inputs=["which country polutes the most ?"],
).style(container=False)
print(f"Type from ask textbox {ask.type}")
with gr.Column(scale=1, variant="panel"):
gr.Markdown("### Sources")
sources_textbox = gr.Textbox(interactive=False, show_label=False, max_lines=50)
ask.submit(
fn=chat,
inputs=[
ask,
state,
gr.inputs.Dropdown(
["IPCC only", "All available"],
default="All available",
label="Select reports",
),
],
outputs=[chatbot, state, sources_textbox],
)
ask.submit(reset_textbox, [], [ask])
with gr.Accordion("Feedbacks", open=False):
gr.Markdown("Please complete some feedbacks π")
feedback = gr.Textbox()
feedback_save = gr.Button(value="submit feedback")
feedback_save.click(test, inputs=[feedback])
with gr.Accordion("Add your personal openai api key - Option", open=False):
openai_api_key_textbox = gr.Textbox(
placeholder="Paste your OpenAI API key (sk-...) and hit Enter",
show_label=False,
lines=1,
type="password",
)
openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox])
openai_api_key_textbox.submit(set_openai_api_key, inputs=[openai_api_key_textbox])
with gr.Tab("Information"):
gr.Markdown(
"""
## π Reports used : \n
- First Assessment Report on the Physical Science of Climate Change
- Second assessment Report on Climate Change Adaptation
- Third Assessment Report on Climate Change Mitigation
- Food Outlook Biannual Report on Global Food Markets
- IEA's report on the Role of Critical Minerals in Clean Energy Transitions
- Limits to Growth
- Outside The Safe operating system of the Planetary Boundary for Novel Entities
- Planetary Boundaries Guiding
- State of the Oceans report
- Word Energy Outlook 2021
- Word Energy Outlook 2022
- The environmental impacts of plastics and micro plastics use, waste and polution ET=U and national measures
- IPBES Global report - MArch 2022
\n
IPCC is a United Nations body that assesses the science related to climate change, including its impacts and possible response options.
The IPCC is considered the leading scientific authority on all things related to global climate change.
"""
)
with gr.Tab("Examples"):
gr.Markdown("See here some examples on how to use the Chatbot")
demo.queue(concurrency_count=16)
|