File size: 861 Bytes
139fefe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.embeddings import HuggingFaceEmbeddings
def get_embeddings_function(version = "v1.2"):
if version == "v1.2":
# https://huggingface.co/BAAI/bge-base-en-v1.5
# Best embedding model at a reasonable size at the moment (2023-11-22)
model_name = "BAAI/bge-base-en-v1.5"
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
embeddings_function = HuggingFaceBgeEmbeddings(
model_name=model_name,
encode_kwargs=encode_kwargs,
query_instruction="Represent this sentence for searching relevant passages: "
)
else:
embeddings_function = HuggingFaceEmbeddings(model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1")
return embeddings_function |