File size: 2,431 Bytes
139fefe
 
 
 
8edfef8
139fefe
 
 
 
8edfef8
139fefe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8edfef8
139fefe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8edfef8
 
 
 
139fefe
 
 
 
8edfef8
 
 
 
 
 
 
 
 
 
 
139fefe
 
2bee256
139fefe
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from operator import itemgetter

from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough, RunnableLambda, RunnableBranch
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import format_document

from climateqa.engine.reformulation import make_reformulation_chain
from climateqa.engine.prompts import answer_prompt_template,answer_prompt_without_docs_template
from climateqa.engine.utils import pass_values, flatten_dict

DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")

def _combine_documents(
    docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, sep="\n\n"
):
    doc_strings = [f"Doc {i+1}: " + format_document(doc, document_prompt) for i,doc in enumerate(docs)]
    return sep.join(doc_strings)


def make_rag_chain(retriever,llm):


    # Construct the prompt
    prompt = ChatPromptTemplate.from_template(answer_prompt_template)
    prompt_without_docs = ChatPromptTemplate.from_template(answer_prompt_without_docs_template)

    # ------- CHAIN 0 - Reformulation
    reformulation_chain = make_reformulation_chain(llm)
    reformulation = (
        {"reformulation":reformulation_chain,**pass_values(["audience","query"])}
        | RunnablePassthrough()
        | flatten_dict
    )


    # ------- CHAIN 1
    # Retrieved documents
    find_documents =  {
        "docs": itemgetter("question") | retriever,
        **pass_values(["question","audience","language","query"])
    } | RunnablePassthrough()


    # ------- CHAIN 2
    # Construct inputs for the llm
    input_documents = {
        "context":lambda x : _combine_documents(x["docs"]),
        **pass_values(["question","audience","language"])
    }

    # Generate the answer



    answer_with_docs = {
        "answer": input_documents | prompt | llm | StrOutputParser(),
        **pass_values(["question","audience","language","query","docs"])
    }

    answer_without_docs = {
        "answer":  prompt_without_docs | llm | StrOutputParser(),
        **pass_values(["question","audience","language","query","docs"])
    }

    answer = RunnableBranch(
        (lambda x: len(x["docs"]) > 0, answer_with_docs),
        answer_without_docs,
    )


    # ------- FINAL CHAIN
    # Build the final chain
    rag_chain = reformulation | find_documents | answer_with_docs

    return rag_chain