File size: 4,332 Bytes
d562d38
 
 
481f3b1
d562d38
 
7335378
481f3b1
 
 
d562d38
 
 
 
 
 
 
481f3b1
d562d38
 
 
 
 
 
 
481f3b1
d562d38
481f3b1
 
d562d38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481f3b1
 
 
d562d38
481f3b1
d562d38
481f3b1
d562d38
 
481f3b1
d562d38
 
 
 
 
 
088e816
d562d38
 
 
 
 
481f3b1
d562d38
481f3b1
d562d38
481f3b1
d562d38
 
481f3b1
d562d38
 
 
481f3b1
d562d38
 
 
481f3b1
d562d38
 
 
 
 
 
 
 
 
 
 
 
481f3b1
d562d38
 
 
 
 
 
 
 
088e816
d562d38
 
 
481f3b1
d562d38
 
 
481f3b1
d562d38
 
481f3b1
d562d38
 
 
 
481f3b1
d562d38
 
481f3b1
d562d38
481f3b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# import sys
# import os
# from contextlib import contextmanager

# from ..reranker import rerank_docs
# from ...knowledge.retriever import ClimateQARetriever




# def divide_into_parts(target, parts):
#     # Base value for each part
#     base = target // parts
#     # Remainder to distribute
#     remainder = target % parts
#     # List to hold the result
#     result = []
    
#     for i in range(parts):
#         if i < remainder:
#             # These parts get base value + 1
#             result.append(base + 1)
#         else:
#             # The rest get the base value
#             result.append(base)
    
#     return result


# @contextmanager
# def suppress_output():
#     # Open a null device
#     with open(os.devnull, 'w') as devnull:
#         # Store the original stdout and stderr
#         old_stdout = sys.stdout
#         old_stderr = sys.stderr
#         # Redirect stdout and stderr to the null device
#         sys.stdout = devnull
#         sys.stderr = devnull
#         try:
#             yield
#         finally:
#             # Restore stdout and stderr
#             sys.stdout = old_stdout
#             sys.stderr = old_stderr



# def make_retriever_node(vectorstore,reranker,rerank_by_question=True, k_final=15, k_before_reranking=100, k_summary=5):

#     def retrieve_documents(state):
        
#         POSSIBLE_SOURCES = ["IPCC","IPBES","IPOS"] # ,"OpenAlex"]
#         questions = state["questions"]
        
#         # Use sources from the user input or from the LLM detection
#         if "sources_input" not in state or state["sources_input"] is None:
#             sources_input = ["auto"]
#         else:
#             sources_input = state["sources_input"]
#         auto_mode = "auto" in sources_input

#         # There are several options to get the final top k
#         # Option 1 - Get 100 documents by question and rerank by question
#         # Option 2 - Get 100/n documents by question and rerank the total
#         if rerank_by_question:
#             k_by_question = divide_into_parts(k_final,len(questions))
        
#         docs = []
        
#         for i,q in enumerate(questions):
            
#             sources = q["sources"]
#             question = q["question"]
            
#             # If auto mode, we use the sources detected by the LLM
#             if auto_mode:
#                 sources = [x for x in sources if x in POSSIBLE_SOURCES]
                
#             # Otherwise, we use the config
#             else:
#                 sources = sources_input
                
#             # Search the document store using the retriever
#             # Configure high top k for further reranking step
#             retriever = ClimateQARetriever(
#                 vectorstore=vectorstore,
#                 sources = sources,
#                 # reports = ias_reports,
#                 min_size = 200,
#                 k_summary = k_summary,
#                 k_total = k_before_reranking,
#                 threshold = 0.5,
#             )
#             docs_question = retriever.get_relevant_documents(question)
            
#             # Rerank
#             if reranker is not None:
#                 with suppress_output():
#                     docs_question = rerank_docs(reranker,docs_question,question)
#             else:
#                 # Add a default reranking score
#                 for doc in docs_question:
#                     doc.metadata["reranking_score"] = doc.metadata["similarity_score"]
                
#             # If rerank by question we select the top documents for each question
#             if rerank_by_question:
#                 docs_question = docs_question[:k_by_question[i]]
                
#             # Add sources used in the metadata
#             for doc in docs_question:
#                 doc.metadata["sources_used"] = sources
            
#             # Add to the list of docs
#             docs.extend(docs_question)
            
#         # Sorting the list in descending order by rerank_score
#         # Then select the top k
#         docs = sorted(docs, key=lambda x: x.metadata["reranking_score"], reverse=True)
#         docs = docs[:k_final]
        
#         new_state = {"documents":docs}
#         return new_state
    
#     return retrieve_documents