Spaces:
Sleeping
Sleeping
File size: 12,676 Bytes
c62903f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import logging.handlers
import os
import sys
import cv2
import numpy as np
import torch
import torch.distributed as dist
import transformers
from egogpt.constants import LOGDIR
try:
import av
from decord import VideoReader, cpu
except ImportError:
print("Please install pyav to use video processing functions.")
server_error_msg = (
"**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
)
moderation_msg = (
"YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
)
handler = None
def build_logger(logger_name, logger_filename):
global handler
formatter = logging.Formatter(
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
# Set the format of root handlers
if not logging.getLogger().handlers:
logging.basicConfig(level=logging.INFO)
logging.getLogger().handlers[0].setFormatter(formatter)
# Redirect stdout and stderr to loggers
stdout_logger = logging.getLogger("stdout")
stdout_logger.setLevel(logging.INFO)
sl = StreamToLogger(stdout_logger, logging.INFO)
sys.stdout = sl
stderr_logger = logging.getLogger("stderr")
stderr_logger.setLevel(logging.ERROR)
sl = StreamToLogger(stderr_logger, logging.ERROR)
sys.stderr = sl
# Get logger
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
# Add a file handler for all loggers
if handler is None:
os.makedirs(LOGDIR, exist_ok=True)
filename = os.path.join(LOGDIR, logger_filename)
handler = logging.handlers.TimedRotatingFileHandler(
filename, when="D", utc=True, encoding="UTF-8"
)
handler.setFormatter(formatter)
for name, item in logging.root.manager.loggerDict.items():
if isinstance(item, logging.Logger):
item.addHandler(handler)
return logger
def process_video_with_decord(video_file, data_args):
vr = VideoReader(video_file, ctx=cpu(0), num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
avg_fps = round(vr.get_avg_fps() / data_args.video_fps)
frame_idx = [i for i in range(0, total_frame_num, avg_fps)]
frame_time = [i / avg_fps for i in frame_idx]
if data_args.frames_upbound > 0:
if len(frame_idx) > data_args.frames_upbound or data_args.force_sample:
uniform_sampled_frames = np.linspace(
0, total_frame_num - 1, data_args.frames_upbound, dtype=int
)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i / vr.get_avg_fps() for i in frame_idx]
frames = vr.get_batch(frame_idx).asnumpy()
# resized_frames = np.array([cv2.resize(frame, (384, 384)) for frame in frames])
# video = resized_frames
video = frames
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
num_frames_to_sample = num_frames = len(frame_idx)
# https://github.com/dmlc/decord/issues/208
vr.seek(0)
return video, video_time, frame_time, num_frames_to_sample
def process_video_with_decord_byframe(
video_file, start_frame, end_frame, data_args, current_observation_frame=None
):
try:
vr = VideoReader(video_file, ctx=cpu(0), num_threads=1)
total_frame_num = len(vr)
selected_frame = min(total_frame_num - 1, end_frame)
avg_fps = round(vr.get_avg_fps() / data_args.video_fps)
frame_idx = [i for i in range(start_frame, selected_frame, avg_fps)]
if data_args.frames_upbound > 0:
if len(frame_idx) > data_args.frames_upbound:
uniform_sampled_frames = np.linspace(
start_frame, selected_frame, data_args.frames_upbound, dtype=int
)
frame_idx = uniform_sampled_frames.tolist()
if current_observation_frame:
frame_idx.append(current_observation_frame)
video = vr.get_batch(frame_idx).asnumpy()
# https://github.com/dmlc/decord/issues/208
vr.seek(0)
except:
raise SyntaxError("Video processing error")
return video
class StreamToLogger(object):
"""
Fake file-like stream object that redirects writes to a logger instance.
"""
def __init__(self, logger, log_level=logging.INFO):
self.terminal = sys.stdout
self.logger = logger
self.log_level = log_level
self.linebuf = ""
def __getattr__(self, attr):
return getattr(self.terminal, attr)
def write(self, buf):
temp_linebuf = self.linebuf + buf
self.linebuf = ""
for line in temp_linebuf.splitlines(True):
# From the io.TextIOWrapper docs:
# On output, if newline is None, any '\n' characters written
# are translated to the system default line separator.
# By default sys.stdout.write() expects '\n' newlines and then
# translates them so this is still cross platform.
if line[-1] == "\n":
self.logger.log(self.log_level, line.rstrip())
else:
self.linebuf += line
def flush(self):
if self.linebuf != "":
self.logger.log(self.log_level, self.linebuf.rstrip())
self.linebuf = ""
def maybe_zero_3(param, ignore_status=False, name=None):
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
if hasattr(param, "ds_id"):
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
if not ignore_status:
logging.warning(
f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}"
)
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
if bias == "none":
to_return = {k: t for k, t in named_params if "lora_" in k}
elif bias == "all":
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
elif bias == "lora_only":
to_return = {}
maybe_lora_bias = {}
lora_bias_names = set()
for k, t in named_params:
if "lora_" in k:
to_return[k] = t
bias_name = k.split("lora_")[0] + "bias"
lora_bias_names.add(bias_name)
elif "bias" in k:
maybe_lora_bias[k] = t
for k, t in maybe_lora_bias:
if bias_name in lora_bias_names:
to_return[bias_name] = t
else:
raise NotImplementedError
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
return to_return
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
to_return = {k: t for k, t in named_params if "lora_" not in k}
if require_grad_only:
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
to_return = {
k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()
}
return to_return
def get_speech_projector_state_maybe_zero_3(named_params, keys_to_match):
to_return = {
k: t
for k, t in named_params
if any(key_match in k for key_match in keys_to_match)
}
to_return = {
k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()
}
return to_return
def find_all_linear_names(model):
cls = torch.nn.Linear
lora_module_names = set()
speech_keywords = ["speech_projector", "speech_encoder"]
for name, module in model.named_modules():
if any(speech_keyword in name for speech_keyword in speech_keywords):
continue
if isinstance(module, cls):
names = name.split(".")
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if "lm_head" in lora_module_names: # needed for 16-bit
lora_module_names.remove("lm_head")
return list(lora_module_names)
def rank0_print(*args):
if dist.is_initialized():
if dist.get_rank() == 0:
print(f"Rank {dist.get_rank()}: ", *args)
else:
print(*args)
def rank_print(*args):
if dist.is_initialized():
print(f"Rank {dist.get_rank()}: ", *args)
else:
print(*args)
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
"""Collects the state dict and dump to disk."""
if getattr(trainer.args, "tune_speech_projector", False):
# Only save projector
keys_to_match = ["speech_projector"]
if getattr(trainer.args, "use_im_start_end", False):
keys_to_match.extend(["embed_tokens", "embed_in"])
weight_to_save = get_speech_projector_state_maybe_zero_3(
trainer.model.named_parameters(), keys_to_match
)
trainer.model.config.save_pretrained(output_dir)
current_folder = output_dir.split("/")[-1]
parent_folder = os.path.dirname(output_dir)
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
if current_folder.startswith("checkpoint-"):
speech_projector_folder = os.path.join(
parent_folder, "speech_projector"
)
os.makedirs(speech_projector_folder, exist_ok=True)
torch.save(
weight_to_save,
os.path.join(speech_projector_folder, f"{current_folder}.bin"),
)
else:
torch.save(
weight_to_save, os.path.join(output_dir, f"speech_projector.bin")
)
return
if trainer.deepspeed:
torch.cuda.synchronize()
trainer.save_model(output_dir)
return
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def lengths_to_padding_mask(lens):
bsz, max_lens = lens.size(0), torch.max(lens).item()
mask = torch.arange(max_lens).to(lens.device).view(1, max_lens)
mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_lens)
return mask
def lengths_to_mask(lens):
return ~lengths_to_padding_mask(lens)
def disable_torch_init():
"""
Disable the redundant torch default initialization to accelerate model creation.
"""
import torch
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if model_paths[-1].startswith("checkpoint-"):
return model_paths[-2] + "_" + model_paths[-1]
else:
return model_paths[-1]
def violates_moderation(text):
"""
Check whether the text violates OpenAI moderation API.
"""
url = "https://api.openai.com/v1/moderations"
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer " + os.environ["OPENAI_API_KEY"],
}
text = text.replace("\n", "")
data = "{" + '"input": ' + f'"{text}"' + "}"
data = data.encode("utf-8")
try:
ret = requests.post(url, headers=headers, data=data, timeout=5)
flagged = ret.json()["results"][0]["flagged"]
except requests.exceptions.RequestException as e:
flagged = False
except KeyError as e:
flagged = False
return flagged
def pretty_print_semaphore(semaphore):
if semaphore is None:
return "None"
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
|