File size: 8,693 Bytes
c173d9b 23b21ed c173d9b 92975f5 c173d9b 92975f5 c173d9b 92975f5 c173d9b 92975f5 c173d9b 92975f5 c173d9b 23b21ed 92975f5 c173d9b 92975f5 c173d9b 92975f5 c173d9b 92975f5 c173d9b 92975f5 c173d9b 92975f5 c173d9b 92975f5 c173d9b 92975f5 c173d9b 92975f5 c173d9b 92975f5 c173d9b 92975f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import base64
import logging
import math
import tempfile
import time
from typing import Optional, Tuple
import os
import fastapi
import jax.numpy as jnp
import numpy as np
import yt_dlp as youtube_dl
from jax.experimental.compilation_cache import compilation_cache as cc
from pydantic import BaseModel
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
from transformers.pipelines.audio_utils import ffmpeg_read
from whisper_jax import FlaxWhisperPipline
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("whisper-jax-app")
try:
cc.initialize_cache("./jax_cache")
checkpoint = "openai/whisper-large-v3"
BATCH_SIZE = 32
CHUNK_LENGTH_S = 30
NUM_PROC = 32
FILE_LIMIT_MB = 10000
YT_LENGTH_LIMIT_S = 15000 # limit to 2 hour YouTube files
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE)
stride_length_s = CHUNK_LENGTH_S / 6
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate)
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate)
step = chunk_len - stride_left - stride_right
# do a pre-compile step
logger.info("compiling forward call...")
start = time.time()
random_inputs = {
"input_features": np.ones(
(BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions)
)
}
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True)
compile_time = time.time() - start
logger.info(f"compiled in {compile_time}s")
except Exception as e:
logger.error(f"Error during initialization: {str(e)}")
raise
app = fastapi.FastAPI()
class TranscriptionRequest(BaseModel):
audio_file: str
task: str = "transcribe"
return_timestamps: bool = False
class TranscriptionResponse(BaseModel):
transcription: str
runtime: float
@app.post("/transcribe", response_model=TranscriptionResponse)
def transcribe_audio(request: TranscriptionRequest):
try:
logger.info("loading audio file...")
if not request.audio_file:
logger.warning("No audio file")
raise fastapi.HTTPException(status_code=400, detail="No audio file submitted!")
audio_bytes = base64.b64decode(request.audio_file)
file_size_mb = len(audio_bytes) / (1024 * 1024)
if file_size_mb > FILE_LIMIT_MB:
logger.warning("Max file size exceeded")
raise fastapi.HTTPException(
status_code=400,
detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.",
)
inputs = ffmpeg_read(audio_bytes, pipeline.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
logger.info("done loading")
text, runtime = _tqdm_generate(inputs, task=request.task, return_timestamps=request.return_timestamps)
return TranscriptionResponse(transcription=text, runtime=runtime)
except Exception as e:
logger.error(f"Error in transcribe_audio: {str(e)}")
raise fastapi.HTTPException(status_code=500, detail=f"An error occurred during transcription: {str(e)}")
@app.post("/transcribe_youtube")
def transcribe_youtube(
yt_url: str, task: str = "transcribe", return_timestamps: bool = False
) -> Tuple[str, str, float]:
try:
logger.info("loading youtube file...")
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
_download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
logger.info("done loading...")
text, runtime = _tqdm_generate(inputs, task=task, return_timestamps=return_timestamps)
return html_embed_str, text, runtime
except Exception as e:
logger.error(f"Error in transcribe_youtube: {str(e)}")
raise fastapi.HTTPException(status_code=500, detail=f"An error occurred during YouTube transcription: {str(e)}")
def _tqdm_generate(inputs: dict, task: str, return_timestamps: bool):
try:
inputs_len = inputs["array"].shape[0]
all_chunk_start_idx = np.arange(0, inputs_len, step)
num_samples = len(all_chunk_start_idx)
num_batches = math.ceil(num_samples / BATCH_SIZE)
dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE)
model_outputs = []
start_time = time.time()
logger.info("transcribing...")
for batch, _ in zip(dataloader, range(num_batches)):
model_outputs.append(pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True))
runtime = time.time() - start_time
logger.info("done transcription")
logger.info("post-processing...")
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True)
text = post_processed["text"]
if return_timestamps:
timestamps = post_processed.get("chunks")
timestamps = [
f"[{_format_timestamp(chunk['timestamp'][0])} -> {_format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
for chunk in timestamps
]
text = "\n".join(str(feature) for feature in timestamps)
logger.info("done post-processing")
return text, runtime
except Exception as e:
logger.error(f"Error in _tqdm_generate: {str(e)}")
raise
def _return_yt_html_embed(yt_url: str) -> str:
try:
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
except Exception as e:
logger.error(f"Error in _return_yt_html_embed: {str(e)}")
raise
def _download_yt_audio(yt_url: str, filename: str):
try:
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise fastapi.HTTPException(status_code=400, detail=str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise fastapi.HTTPException(
status_code=400,
detail=f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.",
)
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise fastapi.HTTPException(status_code=400, detail=str(err))
except Exception as e:
logger.error(f"Error in _download_yt_audio: {str(e)}")
raise
def _format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
try:
if seconds is not None:
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
else:
return seconds
except Exception as e:
logger.error(f"Error in _format_timestamp: {str(e)}")
raise |