Afrinetwork7
commited on
Create router.py
Browse files
router.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
import tempfile
|
5 |
+
import time
|
6 |
+
from typing import Optional, Tuple
|
7 |
+
|
8 |
+
import fastapi
|
9 |
+
import jax.numpy as jnp
|
10 |
+
import numpy as np
|
11 |
+
import yt_dlp as youtube_dl
|
12 |
+
from jax.experimental.compilation_cache import compilation_cache as cc
|
13 |
+
from pydantic import BaseModel
|
14 |
+
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
|
15 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
16 |
+
|
17 |
+
from whisper_jax import FlaxWhisperPipline
|
18 |
+
|
19 |
+
cc.initialize_cache("./jax_cache")
|
20 |
+
checkpoint = "openai/whisper-large-v3"
|
21 |
+
|
22 |
+
BATCH_SIZE = 32
|
23 |
+
CHUNK_LENGTH_S = 30
|
24 |
+
NUM_PROC = 32
|
25 |
+
FILE_LIMIT_MB = 10000
|
26 |
+
YT_LENGTH_LIMIT_S = 15000 # limit to 2 hour YouTube files
|
27 |
+
|
28 |
+
logger = logging.getLogger("whisper-jax-app")
|
29 |
+
logger.setLevel(logging.INFO)
|
30 |
+
ch = logging.StreamHandler()
|
31 |
+
ch.setLevel(logging.INFO)
|
32 |
+
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
|
33 |
+
ch.setFormatter(formatter)
|
34 |
+
logger.addHandler(ch)
|
35 |
+
|
36 |
+
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE)
|
37 |
+
stride_length_s = CHUNK_LENGTH_S / 6
|
38 |
+
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate)
|
39 |
+
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate)
|
40 |
+
step = chunk_len - stride_left - stride_right
|
41 |
+
|
42 |
+
# do a pre-compile step so that the first user to use the demo isn't hit with a long transcription time
|
43 |
+
logger.info("compiling forward call...")
|
44 |
+
start = time.time()
|
45 |
+
random_inputs = {
|
46 |
+
"input_features": np.ones(
|
47 |
+
(BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions)
|
48 |
+
)
|
49 |
+
}
|
50 |
+
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True)
|
51 |
+
compile_time = time.time() - start
|
52 |
+
logger.info(f"compiled in {compile_time}s")
|
53 |
+
|
54 |
+
app = fastapi.FastAPI()
|
55 |
+
|
56 |
+
class TranscriptionRequest(BaseModel):
|
57 |
+
audio_file: str
|
58 |
+
task: str = "transcribe"
|
59 |
+
return_timestamps: bool = False
|
60 |
+
|
61 |
+
class TranscriptionResponse(BaseModel):
|
62 |
+
transcription: str
|
63 |
+
runtime: float
|
64 |
+
|
65 |
+
@app.post("/transcribe", response_model=TranscriptionResponse)
|
66 |
+
def transcribe_audio(request: TranscriptionRequest):
|
67 |
+
logger.info("loading audio file...")
|
68 |
+
if not request.audio_file:
|
69 |
+
logger.warning("No audio file")
|
70 |
+
raise fastapi.HTTPException(status_code=400, detail="No audio file submitted!")
|
71 |
+
|
72 |
+
audio_bytes = base64.b64decode(request.audio_file)
|
73 |
+
file_size_mb = len(audio_bytes) / (1024 * 1024)
|
74 |
+
if file_size_mb > FILE_LIMIT_MB:
|
75 |
+
logger.warning("Max file size exceeded")
|
76 |
+
raise fastapi.HTTPException(
|
77 |
+
status_code=400,
|
78 |
+
detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.",
|
79 |
+
)
|
80 |
+
|
81 |
+
inputs = ffmpeg_read(audio_bytes, pipeline.feature_extractor.sampling_rate)
|
82 |
+
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
|
83 |
+
logger.info("done loading")
|
84 |
+
text, runtime = _tqdm_generate(inputs, task=request.task, return_timestamps=request.return_timestamps)
|
85 |
+
return TranscriptionResponse(transcription=text, runtime=runtime)
|
86 |
+
|
87 |
+
@app.post("/transcribe_youtube")
|
88 |
+
def transcribe_youtube(
|
89 |
+
yt_url: str, task: str = "transcribe", return_timestamps: bool = False
|
90 |
+
) -> Tuple[str, str, float]:
|
91 |
+
logger.info("loading youtube file...")
|
92 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
93 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
94 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
95 |
+
_download_yt_audio(yt_url, filepath)
|
96 |
+
|
97 |
+
with open(filepath, "rb") as f:
|
98 |
+
inputs = f.read()
|
99 |
+
|
100 |
+
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
|
101 |
+
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
|
102 |
+
logger.info("done loading...")
|
103 |
+
text, runtime = _tqdm_generate(inputs, task=task, return_timestamps=return_timestamps)
|
104 |
+
return html_embed_str, text, runtime
|
105 |
+
|
106 |
+
def _tqdm_generate(inputs: dict, task: str, return_timestamps: bool, progress: Optional[fastapi.ProgressBar] = None):
|
107 |
+
inputs_len = inputs["array"].shape[0]
|
108 |
+
all_chunk_start_idx = np.arange(0, inputs_len, step)
|
109 |
+
num_samples = len(all_chunk_start_idx)
|
110 |
+
num_batches = math.ceil(num_samples / BATCH_SIZE)
|
111 |
+
|
112 |
+
dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE)
|
113 |
+
model_outputs = []
|
114 |
+
start_time = time.time()
|
115 |
+
logger.info("transcribing...")
|
116 |
+
# iterate over our chunked audio samples - always predict timestamps to reduce hallucinations
|
117 |
+
for batch, _ in zip(dataloader, range(num_batches)):
|
118 |
+
model_outputs.append(pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True))
|
119 |
+
runtime = time.time() - start_time
|
120 |
+
logger.info("done transcription")
|
121 |
+
|
122 |
+
logger.info("post-processing...")
|
123 |
+
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True)
|
124 |
+
text = post_processed["text"]
|
125 |
+
if return_timestamps:
|
126 |
+
timestamps = post_processed.get("chunks")
|
127 |
+
timestamps = [
|
128 |
+
f"[{_format_timestamp(chunk['timestamp'][0])} -> {_format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
|
129 |
+
for chunk in timestamps
|
130 |
+
]
|
131 |
+
text = "\n".join(str(feature) for feature in timestamps)
|
132 |
+
logger.info("done post-processing")
|
133 |
+
return text, runtime
|
134 |
+
|
135 |
+
def _return_yt_html_embed(yt_url: str) -> str:
|
136 |
+
video_id = yt_url.split("?v=")[-1]
|
137 |
+
HTML_str = (
|
138 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
139 |
+
" </center>"
|
140 |
+
)
|
141 |
+
return HTML_str
|
142 |
+
|
143 |
+
def _download_yt_audio(yt_url: str, filename: str):
|
144 |
+
info_loader = youtube_dl.YoutubeDL()
|
145 |
+
try:
|
146 |
+
info = info_loader.extract_info(yt_url, download=False)
|
147 |
+
except youtube_dl.utils.DownloadError as err:
|
148 |
+
raise fastapi.HTTPException(status_code=400, detail=str(err))
|
149 |
+
|
150 |
+
file_length = info["duration_string"]
|
151 |
+
file_h_m_s = file_length.split(":")
|
152 |
+
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
153 |
+
if len(file_h_m_s) == 1:
|
154 |
+
file_h_m_s.insert(0, 0)
|
155 |
+
if len(file_h_m_s) == 2:
|
156 |
+
file_h_m_s.insert(0, 0)
|
157 |
+
|
158 |
+
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
159 |
+
if file_length_s > YT_LENGTH_LIMIT_S:
|
160 |
+
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
161 |
+
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
162 |
+
raise fastapi.HTTPException(
|
163 |
+
status_code=400,
|
164 |
+
detail=f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.",
|
165 |
+
)
|
166 |
+
|
167 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
168 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
169 |
+
try:
|
170 |
+
ydl.download([yt_url])
|
171 |
+
except youtube_dl.utils.ExtractorError as err:
|
172 |
+
raise fastapi.HTTPException(status_code=400, detail=str(err))
|
173 |
+
|
174 |
+
def _format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
|
175 |
+
if seconds is not None:
|
176 |
+
milliseconds = round(seconds * 1000.0)
|
177 |
+
|
178 |
+
hours = milliseconds // 3_600_000
|
179 |
+
milliseconds -= hours * 3_600_000
|
180 |
+
|
181 |
+
minutes = milliseconds // 60_000
|
182 |
+
milliseconds -= minutes * 60_000
|
183 |
+
|
184 |
+
seconds = milliseconds // 1_000
|
185 |
+
milliseconds -= seconds * 1_000
|
186 |
+
|
187 |
+
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
188 |
+
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
189 |
+
else:
|
190 |
+
# we have a malformed timestamp so just return it as is
|
191 |
+
return seconds
|