Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,479 Bytes
0aaa1f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import inspect
import os
from typing import Any, Dict, List, Optional, Union
import flax
import numpy as np
import PIL.Image
from flax.core.frozen_dict import FrozenDict
from huggingface_hub import create_repo, snapshot_download
from huggingface_hub.utils import validate_hf_hub_args
from PIL import Image
from tqdm.auto import tqdm
from ..configuration_utils import ConfigMixin
from ..models.modeling_flax_utils import FLAX_WEIGHTS_NAME, FlaxModelMixin
from ..schedulers.scheduling_utils_flax import SCHEDULER_CONFIG_NAME, FlaxSchedulerMixin
from ..utils import (
CONFIG_NAME,
BaseOutput,
PushToHubMixin,
http_user_agent,
is_transformers_available,
logging,
)
if is_transformers_available():
from transformers import FlaxPreTrainedModel
INDEX_FILE = "diffusion_flax_model.bin"
logger = logging.get_logger(__name__)
LOADABLE_CLASSES = {
"diffusers": {
"FlaxModelMixin": ["save_pretrained", "from_pretrained"],
"FlaxSchedulerMixin": ["save_pretrained", "from_pretrained"],
"FlaxDiffusionPipeline": ["save_pretrained", "from_pretrained"],
},
"transformers": {
"PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
"PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
"FlaxPreTrainedModel": ["save_pretrained", "from_pretrained"],
"FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
"ProcessorMixin": ["save_pretrained", "from_pretrained"],
"ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
},
}
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])
def import_flax_or_no_model(module, class_name):
try:
# 1. First make sure that if a Flax object is present, import this one
class_obj = getattr(module, "Flax" + class_name)
except AttributeError:
# 2. If this doesn't work, it's not a model and we don't append "Flax"
class_obj = getattr(module, class_name)
except AttributeError:
raise ValueError(f"Neither Flax{class_name} nor {class_name} exist in {module}")
return class_obj
@flax.struct.dataclass
class FlaxImagePipelineOutput(BaseOutput):
"""
Output class for image pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
"""
images: Union[List[PIL.Image.Image], np.ndarray]
class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
r"""
Base class for Flax-based pipelines.
[`FlaxDiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
provides methods for loading, downloading and saving models. It also includes methods to:
- enable/disable the progress bar for the denoising iteration
Class attributes:
- **config_name** ([`str`]) -- The configuration filename that stores the class and module names of all the
diffusion pipeline's components.
"""
config_name = "model_index.json"
def register_modules(self, **kwargs):
# import it here to avoid circular import
from diffusers import pipelines
for name, module in kwargs.items():
if module is None:
register_dict = {name: (None, None)}
else:
# retrieve library
library = module.__module__.split(".")[0]
# check if the module is a pipeline module
pipeline_dir = module.__module__.split(".")[-2]
path = module.__module__.split(".")
is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
# if library is not in LOADABLE_CLASSES, then it is a custom module.
# Or if it's a pipeline module, then the module is inside the pipeline
# folder so we set the library to module name.
if library not in LOADABLE_CLASSES or is_pipeline_module:
library = pipeline_dir
# retrieve class_name
class_name = module.__class__.__name__
register_dict = {name: (library, class_name)}
# save model index config
self.register_to_config(**register_dict)
# set models
setattr(self, name, module)
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
params: Union[Dict, FrozenDict],
push_to_hub: bool = False,
**kwargs,
):
# TODO: handle inference_state
"""
Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
class implements both a save and loading method. The pipeline is easily reloaded using the
[`~FlaxDiffusionPipeline.from_pretrained`] class method.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to which to save. Will be created if it doesn't exist.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
self.save_config(save_directory)
model_index_dict = dict(self.config)
model_index_dict.pop("_class_name")
model_index_dict.pop("_diffusers_version")
model_index_dict.pop("_module", None)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
private = kwargs.pop("private", False)
create_pr = kwargs.pop("create_pr", False)
token = kwargs.pop("token", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id
for pipeline_component_name in model_index_dict.keys():
sub_model = getattr(self, pipeline_component_name)
if sub_model is None:
# edge case for saving a pipeline with safety_checker=None
continue
model_cls = sub_model.__class__
save_method_name = None
# search for the model's base class in LOADABLE_CLASSES
for library_name, library_classes in LOADABLE_CLASSES.items():
library = importlib.import_module(library_name)
for base_class, save_load_methods in library_classes.items():
class_candidate = getattr(library, base_class, None)
if class_candidate is not None and issubclass(model_cls, class_candidate):
# if we found a suitable base class in LOADABLE_CLASSES then grab its save method
save_method_name = save_load_methods[0]
break
if save_method_name is not None:
break
save_method = getattr(sub_model, save_method_name)
expects_params = "params" in set(inspect.signature(save_method).parameters.keys())
if expects_params:
save_method(
os.path.join(save_directory, pipeline_component_name), params=params[pipeline_component_name]
)
else:
save_method(os.path.join(save_directory, pipeline_component_name))
if push_to_hub:
self._upload_folder(
save_directory,
repo_id,
token=token,
commit_message=commit_message,
create_pr=create_pr,
)
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
r"""
Instantiate a Flax-based diffusion pipeline from pretrained pipeline weights.
The pipeline is set in evaluation mode (`model.eval()) by default and dropout modules are deactivated.
If you get the error message below, you need to finetune the weights for your downstream task:
```
Some weights of FlaxUNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
```
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *repo id* (for example `runwayml/stable-diffusion-v1-5`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
using [`~FlaxDiffusionPipeline.save_pretrained`].
dtype (`str` or `jnp.dtype`, *optional*):
Override the default `jnp.dtype` and load the model under this dtype. If `"auto"`, the dtype is
automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components) of the specific pipeline
class. The overwritten components are passed directly to the pipelines `__init__` method.
<Tip>
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
`huggingface-cli login`.
</Tip>
Examples:
```py
>>> from diffusers import FlaxDiffusionPipeline
>>> # Download pipeline from huggingface.co and cache.
>>> # Requires to be logged in to Hugging Face hub,
>>> # see more in [the documentation](https://huggingface.co/docs/hub/security-tokens)
>>> pipeline, params = FlaxDiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5",
... revision="bf16",
... dtype=jnp.bfloat16,
... )
>>> # Download pipeline, but use a different scheduler
>>> from diffusers import FlaxDPMSolverMultistepScheduler
>>> model_id = "runwayml/stable-diffusion-v1-5"
>>> dpmpp, dpmpp_state = FlaxDPMSolverMultistepScheduler.from_pretrained(
... model_id,
... subfolder="scheduler",
... )
>>> dpm_pipe, dpm_params = FlaxStableDiffusionPipeline.from_pretrained(
... model_id, revision="bf16", dtype=jnp.bfloat16, scheduler=dpmpp
... )
>>> dpm_params["scheduler"] = dpmpp_state
```
"""
cache_dir = kwargs.pop("cache_dir", None)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
from_pt = kwargs.pop("from_pt", False)
use_memory_efficient_attention = kwargs.pop("use_memory_efficient_attention", False)
split_head_dim = kwargs.pop("split_head_dim", False)
dtype = kwargs.pop("dtype", None)
# 1. Download the checkpoints and configs
# use snapshot download here to get it working from from_pretrained
if not os.path.isdir(pretrained_model_name_or_path):
config_dict = cls.load_config(
pretrained_model_name_or_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
)
# make sure we only download sub-folders and `diffusers` filenames
folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
allow_patterns = [os.path.join(k, "*") for k in folder_names]
allow_patterns += [FLAX_WEIGHTS_NAME, SCHEDULER_CONFIG_NAME, CONFIG_NAME, cls.config_name]
ignore_patterns = ["*.bin", "*.safetensors"] if not from_pt else []
ignore_patterns += ["*.onnx", "*.onnx_data", "*.xml", "*.pb"]
if cls != FlaxDiffusionPipeline:
requested_pipeline_class = cls.__name__
else:
requested_pipeline_class = config_dict.get("_class_name", cls.__name__)
requested_pipeline_class = (
requested_pipeline_class
if requested_pipeline_class.startswith("Flax")
else "Flax" + requested_pipeline_class
)
user_agent = {"pipeline_class": requested_pipeline_class}
user_agent = http_user_agent(user_agent)
# download all allow_patterns
cached_folder = snapshot_download(
pretrained_model_name_or_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
user_agent=user_agent,
)
else:
cached_folder = pretrained_model_name_or_path
config_dict = cls.load_config(cached_folder)
# 2. Load the pipeline class, if using custom module then load it from the hub
# if we load from explicit class, let's use it
if cls != FlaxDiffusionPipeline:
pipeline_class = cls
else:
diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
class_name = (
config_dict["_class_name"]
if config_dict["_class_name"].startswith("Flax")
else "Flax" + config_dict["_class_name"]
)
pipeline_class = getattr(diffusers_module, class_name)
# some modules can be passed directly to the init
# in this case they are already instantiated in `kwargs`
# extract them here
expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
# define init kwargs
init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
init_kwargs = {**init_kwargs, **passed_pipe_kwargs}
# remove `null` components
def load_module(name, value):
if value[0] is None:
return False
if name in passed_class_obj and passed_class_obj[name] is None:
return False
return True
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
# Throw nice warnings / errors for fast accelerate loading
if len(unused_kwargs) > 0:
logger.warning(
f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
)
# inference_params
params = {}
# import it here to avoid circular import
from diffusers import pipelines
# 3. Load each module in the pipeline
for name, (library_name, class_name) in init_dict.items():
if class_name is None:
# edge case for when the pipeline was saved with safety_checker=None
init_kwargs[name] = None
continue
is_pipeline_module = hasattr(pipelines, library_name)
loaded_sub_model = None
sub_model_should_be_defined = True
# if the model is in a pipeline module, then we load it from the pipeline
if name in passed_class_obj:
# 1. check that passed_class_obj has correct parent class
if not is_pipeline_module:
library = importlib.import_module(library_name)
class_obj = getattr(library, class_name)
importable_classes = LOADABLE_CLASSES[library_name]
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
expected_class_obj = None
for class_name, class_candidate in class_candidates.items():
if class_candidate is not None and issubclass(class_obj, class_candidate):
expected_class_obj = class_candidate
if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
raise ValueError(
f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
f" {expected_class_obj}"
)
elif passed_class_obj[name] is None:
logger.warning(
f"You have passed `None` for {name} to disable its functionality in {pipeline_class}. Note"
f" that this might lead to problems when using {pipeline_class} and is not recommended."
)
sub_model_should_be_defined = False
else:
logger.warning(
f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
" has the correct type"
)
# set passed class object
loaded_sub_model = passed_class_obj[name]
elif is_pipeline_module:
pipeline_module = getattr(pipelines, library_name)
class_obj = import_flax_or_no_model(pipeline_module, class_name)
importable_classes = ALL_IMPORTABLE_CLASSES
class_candidates = {c: class_obj for c in importable_classes.keys()}
else:
# else we just import it from the library.
library = importlib.import_module(library_name)
class_obj = import_flax_or_no_model(library, class_name)
importable_classes = LOADABLE_CLASSES[library_name]
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
if loaded_sub_model is None and sub_model_should_be_defined:
load_method_name = None
for class_name, class_candidate in class_candidates.items():
if class_candidate is not None and issubclass(class_obj, class_candidate):
load_method_name = importable_classes[class_name][1]
load_method = getattr(class_obj, load_method_name)
# check if the module is in a subdirectory
if os.path.isdir(os.path.join(cached_folder, name)):
loadable_folder = os.path.join(cached_folder, name)
else:
loaded_sub_model = cached_folder
if issubclass(class_obj, FlaxModelMixin):
loaded_sub_model, loaded_params = load_method(
loadable_folder,
from_pt=from_pt,
use_memory_efficient_attention=use_memory_efficient_attention,
split_head_dim=split_head_dim,
dtype=dtype,
)
params[name] = loaded_params
elif is_transformers_available() and issubclass(class_obj, FlaxPreTrainedModel):
if from_pt:
# TODO(Suraj): Fix this in Transformers. We should be able to use `_do_init=False` here
loaded_sub_model = load_method(loadable_folder, from_pt=from_pt)
loaded_params = loaded_sub_model.params
del loaded_sub_model._params
else:
loaded_sub_model, loaded_params = load_method(loadable_folder, _do_init=False)
params[name] = loaded_params
elif issubclass(class_obj, FlaxSchedulerMixin):
loaded_sub_model, scheduler_state = load_method(loadable_folder)
params[name] = scheduler_state
else:
loaded_sub_model = load_method(loadable_folder)
init_kwargs[name] = loaded_sub_model # UNet(...), # DiffusionSchedule(...)
# 4. Potentially add passed objects if expected
missing_modules = set(expected_modules) - set(init_kwargs.keys())
passed_modules = list(passed_class_obj.keys())
if len(missing_modules) > 0 and missing_modules <= set(passed_modules):
for module in missing_modules:
init_kwargs[module] = passed_class_obj.get(module, None)
elif len(missing_modules) > 0:
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
raise ValueError(
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
)
model = pipeline_class(**init_kwargs, dtype=dtype)
return model, params
@classmethod
def _get_signature_keys(cls, obj):
parameters = inspect.signature(obj.__init__).parameters
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
expected_modules = set(required_parameters.keys()) - {"self"}
return expected_modules, optional_parameters
@property
def components(self) -> Dict[str, Any]:
r"""
The `self.components` property can be useful to run different pipelines with the same weights and
configurations to not have to re-allocate memory.
Examples:
```py
>>> from diffusers import (
... FlaxStableDiffusionPipeline,
... FlaxStableDiffusionImg2ImgPipeline,
... )
>>> text2img = FlaxStableDiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", revision="bf16", dtype=jnp.bfloat16
... )
>>> img2img = FlaxStableDiffusionImg2ImgPipeline(**text2img.components)
```
Returns:
A dictionary containing all the modules needed to initialize the pipeline.
"""
expected_modules, optional_parameters = self._get_signature_keys(self)
components = {
k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
}
if set(components.keys()) != expected_modules:
raise ValueError(
f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
f" {expected_modules} to be defined, but {components} are defined."
)
return components
@staticmethod
def numpy_to_pil(images):
"""
Convert a NumPy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
# TODO: make it compatible with jax.lax
def progress_bar(self, iterable):
if not hasattr(self, "_progress_bar_config"):
self._progress_bar_config = {}
elif not isinstance(self._progress_bar_config, dict):
raise ValueError(
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
)
return tqdm(iterable, **self._progress_bar_config)
def set_progress_bar_config(self, **kwargs):
self._progress_bar_config = kwargs
|