Spaces:
Running
on
L40S
Running
on
L40S
File size: 1,601 Bytes
0aaa1f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
from typing import List
import PIL.Image
import torch
from PIL import Image
from ...configuration_utils import ConfigMixin
from ...models.modeling_utils import ModelMixin
from ...utils import PIL_INTERPOLATION
class IFWatermarker(ModelMixin, ConfigMixin):
def __init__(self):
super().__init__()
self.register_buffer("watermark_image", torch.zeros((62, 62, 4)))
self.watermark_image_as_pil = None
def apply_watermark(self, images: List[PIL.Image.Image], sample_size=None):
# copied from https://github.com/deep-floyd/IF/blob/b77482e36ca2031cb94dbca1001fc1e6400bf4ab/deepfloyd_if/modules/base.py#L287
h = images[0].height
w = images[0].width
sample_size = sample_size or h
coef = min(h / sample_size, w / sample_size)
img_h, img_w = (int(h / coef), int(w / coef)) if coef < 1 else (h, w)
S1, S2 = 1024**2, img_w * img_h
K = (S2 / S1) ** 0.5
wm_size, wm_x, wm_y = int(K * 62), img_w - int(14 * K), img_h - int(14 * K)
if self.watermark_image_as_pil is None:
watermark_image = self.watermark_image.to(torch.uint8).cpu().numpy()
watermark_image = Image.fromarray(watermark_image, mode="RGBA")
self.watermark_image_as_pil = watermark_image
wm_img = self.watermark_image_as_pil.resize(
(wm_size, wm_size), PIL_INTERPOLATION["bicubic"], reducing_gap=None
)
for pil_img in images:
pil_img.paste(wm_img, box=(wm_x - wm_size, wm_y - wm_size, wm_x, wm_y), mask=wm_img.split()[-1])
return images
|