Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,701 Bytes
0aaa1f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional
import numpy as np
import torch
from torch import nn
from ..utils import USE_PEFT_BACKEND
from .activations import get_activation
from .attention_processor import Attention
from .lora import LoRACompatibleLinear
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
def get_2d_sincos_pos_embed(
embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
):
"""
grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
[1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
if isinstance(grid_size, int):
grid_size = (grid_size, grid_size)
grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
"""
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
height=224,
width=224,
patch_size=16,
in_channels=3,
embed_dim=768,
layer_norm=False,
flatten=True,
bias=True,
interpolation_scale=1,
):
super().__init__()
num_patches = (height // patch_size) * (width // patch_size)
self.flatten = flatten
self.layer_norm = layer_norm
self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)
if layer_norm:
self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
else:
self.norm = None
self.patch_size = patch_size
# See:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L161
self.height, self.width = height // patch_size, width // patch_size
self.base_size = height // patch_size
self.interpolation_scale = interpolation_scale
pos_embed = get_2d_sincos_pos_embed(
embed_dim, int(num_patches**0.5), base_size=self.base_size, interpolation_scale=self.interpolation_scale
)
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False)
def forward(self, latent):
height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
latent = self.proj(latent)
if self.flatten:
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
if self.layer_norm:
latent = self.norm(latent)
# Interpolate positional embeddings if needed.
# (For PixArt-Alpha: https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L162C151-L162C160)
if self.height != height or self.width != width:
pos_embed = get_2d_sincos_pos_embed(
embed_dim=self.pos_embed.shape[-1],
grid_size=(height, width),
base_size=self.base_size,
interpolation_scale=self.interpolation_scale,
)
pos_embed = torch.from_numpy(pos_embed)
pos_embed = pos_embed.float().unsqueeze(0).to(latent.device)
else:
pos_embed = self.pos_embed
return (latent + pos_embed).to(latent.dtype)
class TimestepEmbedding(nn.Module):
def __init__(
self,
in_channels: int,
time_embed_dim: int,
act_fn: str = "silu",
out_dim: int = None,
post_act_fn: Optional[str] = None,
cond_proj_dim=None,
sample_proj_bias=True,
):
super().__init__()
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
self.linear_1 = linear_cls(in_channels, time_embed_dim, sample_proj_bias)
if cond_proj_dim is not None:
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
else:
self.cond_proj = None
self.act = get_activation(act_fn)
if out_dim is not None:
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = linear_cls(time_embed_dim, time_embed_dim_out, sample_proj_bias)
if post_act_fn is None:
self.post_act = None
else:
self.post_act = get_activation(post_act_fn)
def forward(self, sample, condition=None):
if condition is not None:
sample = sample + self.cond_proj(condition)
sample = self.linear_1(sample)
if self.act is not None:
sample = self.act(sample)
sample = self.linear_2(sample)
if self.post_act is not None:
sample = self.post_act(sample)
return sample
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
)
return t_emb
class GaussianFourierProjection(nn.Module):
"""Gaussian Fourier embeddings for noise levels."""
def __init__(
self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
):
super().__init__()
self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
self.log = log
self.flip_sin_to_cos = flip_sin_to_cos
if set_W_to_weight:
# to delete later
self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
self.weight = self.W
def forward(self, x):
if self.log:
x = torch.log(x)
x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi
if self.flip_sin_to_cos:
out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
else:
out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
return out
class SinusoidalPositionalEmbedding(nn.Module):
"""Apply positional information to a sequence of embeddings.
Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to
them
Args:
embed_dim: (int): Dimension of the positional embedding.
max_seq_length: Maximum sequence length to apply positional embeddings
"""
def __init__(self, embed_dim: int, max_seq_length: int = 32):
super().__init__()
position = torch.arange(max_seq_length).unsqueeze(1)
div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim))
pe = torch.zeros(1, max_seq_length, embed_dim)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer("pe", pe)
def forward(self, x):
_, seq_length, _ = x.shape
x = x + self.pe[:, :seq_length]
return x
class ImagePositionalEmbeddings(nn.Module):
"""
Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the
height and width of the latent space.
For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092
For VQ-diffusion:
Output vector embeddings are used as input for the transformer.
Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE.
Args:
num_embed (`int`):
Number of embeddings for the latent pixels embeddings.
height (`int`):
Height of the latent image i.e. the number of height embeddings.
width (`int`):
Width of the latent image i.e. the number of width embeddings.
embed_dim (`int`):
Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings.
"""
def __init__(
self,
num_embed: int,
height: int,
width: int,
embed_dim: int,
):
super().__init__()
self.height = height
self.width = width
self.num_embed = num_embed
self.embed_dim = embed_dim
self.emb = nn.Embedding(self.num_embed, embed_dim)
self.height_emb = nn.Embedding(self.height, embed_dim)
self.width_emb = nn.Embedding(self.width, embed_dim)
def forward(self, index):
emb = self.emb(index)
height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height))
# 1 x H x D -> 1 x H x 1 x D
height_emb = height_emb.unsqueeze(2)
width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width))
# 1 x W x D -> 1 x 1 x W x D
width_emb = width_emb.unsqueeze(1)
pos_emb = height_emb + width_emb
# 1 x H x W x D -> 1 x L xD
pos_emb = pos_emb.view(1, self.height * self.width, -1)
emb = emb + pos_emb[:, : emb.shape[1], :]
return emb
class LabelEmbedding(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
Args:
num_classes (`int`): The number of classes.
hidden_size (`int`): The size of the vector embeddings.
dropout_prob (`float`): The probability of dropping a label.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
else:
drop_ids = torch.tensor(force_drop_ids == 1)
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels: torch.LongTensor, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (self.training and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
class TextImageProjection(nn.Module):
def __init__(
self,
text_embed_dim: int = 1024,
image_embed_dim: int = 768,
cross_attention_dim: int = 768,
num_image_text_embeds: int = 10,
):
super().__init__()
self.num_image_text_embeds = num_image_text_embeds
self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim)
def forward(self, text_embeds: torch.FloatTensor, image_embeds: torch.FloatTensor):
batch_size = text_embeds.shape[0]
# image
image_text_embeds = self.image_embeds(image_embeds)
image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
# text
text_embeds = self.text_proj(text_embeds)
return torch.cat([image_text_embeds, text_embeds], dim=1)
class ImageProjection(nn.Module):
def __init__(
self,
image_embed_dim: int = 768,
cross_attention_dim: int = 768,
num_image_text_embeds: int = 32,
):
super().__init__()
self.num_image_text_embeds = num_image_text_embeds
self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds: torch.FloatTensor):
batch_size = image_embeds.shape[0]
# image
image_embeds = self.image_embeds(image_embeds)
image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
image_embeds = self.norm(image_embeds)
return image_embeds
class IPAdapterFullImageProjection(nn.Module):
def __init__(self, image_embed_dim=1024, cross_attention_dim=1024):
super().__init__()
from .attention import FeedForward
self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu")
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds: torch.FloatTensor):
return self.norm(self.ff(image_embeds))
class CombinedTimestepLabelEmbeddings(nn.Module):
def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob)
def forward(self, timestep, class_labels, hidden_dtype=None):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
class_labels = self.class_embedder(class_labels) # (N, D)
conditioning = timesteps_emb + class_labels # (N, D)
return conditioning
class TextTimeEmbedding(nn.Module):
def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64):
super().__init__()
self.norm1 = nn.LayerNorm(encoder_dim)
self.pool = AttentionPooling(num_heads, encoder_dim)
self.proj = nn.Linear(encoder_dim, time_embed_dim)
self.norm2 = nn.LayerNorm(time_embed_dim)
def forward(self, hidden_states):
hidden_states = self.norm1(hidden_states)
hidden_states = self.pool(hidden_states)
hidden_states = self.proj(hidden_states)
hidden_states = self.norm2(hidden_states)
return hidden_states
class TextImageTimeEmbedding(nn.Module):
def __init__(self, text_embed_dim: int = 768, image_embed_dim: int = 768, time_embed_dim: int = 1536):
super().__init__()
self.text_proj = nn.Linear(text_embed_dim, time_embed_dim)
self.text_norm = nn.LayerNorm(time_embed_dim)
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
def forward(self, text_embeds: torch.FloatTensor, image_embeds: torch.FloatTensor):
# text
time_text_embeds = self.text_proj(text_embeds)
time_text_embeds = self.text_norm(time_text_embeds)
# image
time_image_embeds = self.image_proj(image_embeds)
return time_image_embeds + time_text_embeds
class ImageTimeEmbedding(nn.Module):
def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
super().__init__()
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
self.image_norm = nn.LayerNorm(time_embed_dim)
def forward(self, image_embeds: torch.FloatTensor):
# image
time_image_embeds = self.image_proj(image_embeds)
time_image_embeds = self.image_norm(time_image_embeds)
return time_image_embeds
class ImageHintTimeEmbedding(nn.Module):
def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
super().__init__()
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
self.image_norm = nn.LayerNorm(time_embed_dim)
self.input_hint_block = nn.Sequential(
nn.Conv2d(3, 16, 3, padding=1),
nn.SiLU(),
nn.Conv2d(16, 16, 3, padding=1),
nn.SiLU(),
nn.Conv2d(16, 32, 3, padding=1, stride=2),
nn.SiLU(),
nn.Conv2d(32, 32, 3, padding=1),
nn.SiLU(),
nn.Conv2d(32, 96, 3, padding=1, stride=2),
nn.SiLU(),
nn.Conv2d(96, 96, 3, padding=1),
nn.SiLU(),
nn.Conv2d(96, 256, 3, padding=1, stride=2),
nn.SiLU(),
nn.Conv2d(256, 4, 3, padding=1),
)
def forward(self, image_embeds: torch.FloatTensor, hint: torch.FloatTensor):
# image
time_image_embeds = self.image_proj(image_embeds)
time_image_embeds = self.image_norm(time_image_embeds)
hint = self.input_hint_block(hint)
return time_image_embeds, hint
class AttentionPooling(nn.Module):
# Copied from https://github.com/deep-floyd/IF/blob/2f91391f27dd3c468bf174be5805b4cc92980c0b/deepfloyd_if/model/nn.py#L54
def __init__(self, num_heads, embed_dim, dtype=None):
super().__init__()
self.dtype = dtype
self.positional_embedding = nn.Parameter(torch.randn(1, embed_dim) / embed_dim**0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
self.q_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
self.v_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
self.num_heads = num_heads
self.dim_per_head = embed_dim // self.num_heads
def forward(self, x):
bs, length, width = x.size()
def shape(x):
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, -1, self.num_heads, self.dim_per_head)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs * self.num_heads, -1, self.dim_per_head)
# (bs*n_heads, length, dim_per_head) --> (bs*n_heads, dim_per_head, length)
x = x.transpose(1, 2)
return x
class_token = x.mean(dim=1, keepdim=True) + self.positional_embedding.to(x.dtype)
x = torch.cat([class_token, x], dim=1) # (bs, length+1, width)
# (bs*n_heads, class_token_length, dim_per_head)
q = shape(self.q_proj(class_token))
# (bs*n_heads, length+class_token_length, dim_per_head)
k = shape(self.k_proj(x))
v = shape(self.v_proj(x))
# (bs*n_heads, class_token_length, length+class_token_length):
scale = 1 / math.sqrt(math.sqrt(self.dim_per_head))
weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
# (bs*n_heads, dim_per_head, class_token_length)
a = torch.einsum("bts,bcs->bct", weight, v)
# (bs, length+1, width)
a = a.reshape(bs, -1, 1).transpose(1, 2)
return a[:, 0, :] # cls_token
def get_fourier_embeds_from_boundingbox(embed_dim, box):
"""
Args:
embed_dim: int
box: a 3-D tensor [B x N x 4] representing the bounding boxes for GLIGEN pipeline
Returns:
[B x N x embed_dim] tensor of positional embeddings
"""
batch_size, num_boxes = box.shape[:2]
emb = 100 ** (torch.arange(embed_dim) / embed_dim)
emb = emb[None, None, None].to(device=box.device, dtype=box.dtype)
emb = emb * box.unsqueeze(-1)
emb = torch.stack((emb.sin(), emb.cos()), dim=-1)
emb = emb.permute(0, 1, 3, 4, 2).reshape(batch_size, num_boxes, embed_dim * 2 * 4)
return emb
class GLIGENTextBoundingboxProjection(nn.Module):
def __init__(self, positive_len, out_dim, feature_type="text-only", fourier_freqs=8):
super().__init__()
self.positive_len = positive_len
self.out_dim = out_dim
self.fourier_embedder_dim = fourier_freqs
self.position_dim = fourier_freqs * 2 * 4 # 2: sin/cos, 4: xyxy
if isinstance(out_dim, tuple):
out_dim = out_dim[0]
if feature_type == "text-only":
self.linears = nn.Sequential(
nn.Linear(self.positive_len + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
elif feature_type == "text-image":
self.linears_text = nn.Sequential(
nn.Linear(self.positive_len + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.linears_image = nn.Sequential(
nn.Linear(self.positive_len + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))
def forward(
self,
boxes,
masks,
positive_embeddings=None,
phrases_masks=None,
image_masks=None,
phrases_embeddings=None,
image_embeddings=None,
):
masks = masks.unsqueeze(-1)
# embedding position (it may includes padding as placeholder)
xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, boxes) # B*N*4 -> B*N*C
# learnable null embedding
xyxy_null = self.null_position_feature.view(1, 1, -1)
# replace padding with learnable null embedding
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
# positionet with text only information
if positive_embeddings is not None:
# learnable null embedding
positive_null = self.null_positive_feature.view(1, 1, -1)
# replace padding with learnable null embedding
positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null
objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
# positionet with text and image infomation
else:
phrases_masks = phrases_masks.unsqueeze(-1)
image_masks = image_masks.unsqueeze(-1)
# learnable null embedding
text_null = self.null_text_feature.view(1, 1, -1)
image_null = self.null_image_feature.view(1, 1, -1)
# replace padding with learnable null embedding
phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null
image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null
objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1))
objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1))
objs = torch.cat([objs_text, objs_image], dim=1)
return objs
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
"""
For PixArt-Alpha.
Reference:
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
"""
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
super().__init__()
self.outdim = size_emb_dim
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.use_additional_conditions = use_additional_conditions
if use_additional_conditions:
self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
if self.use_additional_conditions:
resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype)
resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1)
aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype)
aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1)
conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1)
else:
conditioning = timesteps_emb
return conditioning
class PixArtAlphaTextProjection(nn.Module):
"""
Projects caption embeddings. Also handles dropout for classifier-free guidance.
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_features, hidden_size, num_tokens=120):
super().__init__()
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
self.act_1 = nn.GELU(approximate="tanh")
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True)
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class IPAdapterPlusImageProjection(nn.Module):
"""Resampler of IP-Adapter Plus.
Args:
----
embed_dims (int): The feature dimension. Defaults to 768.
output_dims (int): The number of output channels, that is the same
number of the channels in the
`unet.config.cross_attention_dim`. Defaults to 1024.
hidden_dims (int): The number of hidden channels. Defaults to 1280.
depth (int): The number of blocks. Defaults to 8.
dim_head (int): The number of head channels. Defaults to 64.
heads (int): Parallel attention heads. Defaults to 16.
num_queries (int): The number of queries. Defaults to 8.
ffn_ratio (float): The expansion ratio of feedforward network hidden
layer channels. Defaults to 4.
"""
def __init__(
self,
embed_dims: int = 768,
output_dims: int = 1024,
hidden_dims: int = 1280,
depth: int = 4,
dim_head: int = 64,
heads: int = 16,
num_queries: int = 8,
ffn_ratio: float = 4,
) -> None:
super().__init__()
from .attention import FeedForward # Lazy import to avoid circular import
self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims**0.5)
self.proj_in = nn.Linear(embed_dims, hidden_dims)
self.proj_out = nn.Linear(hidden_dims, output_dims)
self.norm_out = nn.LayerNorm(output_dims)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
nn.LayerNorm(hidden_dims),
nn.LayerNorm(hidden_dims),
Attention(
query_dim=hidden_dims,
dim_head=dim_head,
heads=heads,
out_bias=False,
),
nn.Sequential(
nn.LayerNorm(hidden_dims),
FeedForward(hidden_dims, hidden_dims, activation_fn="gelu", mult=ffn_ratio, bias=False),
),
]
)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
----
x (torch.Tensor): Input Tensor.
Returns:
-------
torch.Tensor: Output Tensor.
"""
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
for ln0, ln1, attn, ff in self.layers:
residual = latents
encoder_hidden_states = ln0(x)
latents = ln1(latents)
encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2)
latents = attn(latents, encoder_hidden_states) + residual
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)
|