File size: 5,610 Bytes
3b49518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# --------------------------------------------------------
# Based on timm and MAE-priv code bases
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/BUPT-PRIV/MAE-priv
# --------------------------------------------------------

import math
import random
import warnings

import numpy as np
import torch
import torchvision.transforms.functional as F
from PIL import Image


class ToNumpy:

    def __call__(self, pil_img):
        np_img = np.array(pil_img, dtype=np.uint8)
        if np_img.ndim < 3:
            np_img = np.expand_dims(np_img, axis=-1)
        np_img = np.rollaxis(np_img, 2)  # HWC to CHW
        return np_img


class ToTensor:

    def __init__(self, dtype=torch.float32):
        self.dtype = dtype

    def __call__(self, pil_img):
        np_img = np.array(pil_img, dtype=np.uint8)
        if np_img.ndim < 3:
            np_img = np.expand_dims(np_img, axis=-1)
        np_img = np.rollaxis(np_img, 2)  # HWC to CHW
        return torch.from_numpy(np_img).to(dtype=self.dtype)


_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
}


def _pil_interp(method):
    if method == 'bicubic':
        return Image.BICUBIC
    elif method == 'lanczos':
        return Image.LANCZOS
    elif method == 'hamming':
        return Image.HAMMING
    else:
        # default bilinear, do we want to allow nearest?
        return Image.BILINEAR


_RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC)


class RandomResizedCropAndInterpolation:
    """Crop the given PIL Image to random size and aspect ratio with random interpolation.

    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
        size: expected output size of each edge
        scale: range of size of the origin size cropped
        ratio: range of aspect ratio of the origin aspect ratio cropped
        interpolation: Default: PIL.Image.BILINEAR
    """

    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.),
                 interpolation='bilinear'):
        if isinstance(size, (list, tuple)):
            self.size = tuple(size)
        else:
            self.size = (size, size)
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")

        if interpolation == 'random':
            self.interpolation = _RANDOM_INTERPOLATION
        else:
            self.interpolation = _pil_interp(interpolation)
        self.scale = scale
        self.ratio = ratio

    @staticmethod
    def get_params(img, scale, ratio):
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
            scale (tuple): range of size of the origin size cropped
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
        area = img.size[0] * img.size[1]

        for attempt in range(10):
            target_area = random.uniform(*scale) * area
            log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
            aspect_ratio = math.exp(random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if w <= img.size[0] and h <= img.size[1]:
                i = random.randint(0, img.size[1] - h)
                j = random.randint(0, img.size[0] - w)
                return i, j, h, w

        # Fallback to central crop
        in_ratio = img.size[0] / img.size[1]
        if in_ratio < min(ratio):
            w = img.size[0]
            h = int(round(w / min(ratio)))
        elif in_ratio > max(ratio):
            h = img.size[1]
            w = int(round(h * max(ratio)))
        else:  # whole image
            w = img.size[0]
            h = img.size[1]
        i = (img.size[1] - h) // 2
        j = (img.size[0] - w) // 2
        return i, j, h, w

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped and resized.

        Returns:
            PIL Image: Randomly cropped and resized image.
        """
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
        if isinstance(self.interpolation, (tuple, list)):
            interpolation = random.choice(self.interpolation)
        else:
            interpolation = self.interpolation
        return F.resized_crop(img, i, j, h, w, self.size, interpolation)

    def __repr__(self):
        if isinstance(self.interpolation, (tuple, list)):
            interpolate_str = ' '.join([_pil_interpolation_to_str[x] for x in self.interpolation])
        else:
            interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string