Spaces:
Runtime error
Runtime error
File size: 3,782 Bytes
3b49518 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import logging
from itertools import count
import numpy as np
import torch
from fvcore.transforms import HFlipTransform
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from detectron2.data.detection_utils import read_image
from detectron2.modeling import DatasetMapperTTA
__all__ = [
"SemanticSegmentorWithTTA",
]
class SemanticSegmentorWithTTA(nn.Module):
"""
A SemanticSegmentor with test-time augmentation enabled.
Its :meth:`__call__` method has the same interface as :meth:`SemanticSegmentor.forward`.
"""
def __init__(self, cfg, model, tta_mapper=None, batch_size=1):
"""
Args:
cfg (CfgNode):
model (SemanticSegmentor): a SemanticSegmentor to apply TTA on.
tta_mapper (callable): takes a dataset dict and returns a list of
augmented versions of the dataset dict. Defaults to
`DatasetMapperTTA(cfg)`.
batch_size (int): batch the augmented images into this batch size for inference.
"""
super().__init__()
if isinstance(model, DistributedDataParallel):
model = model.module
self.cfg = cfg.clone()
self.model = model
if tta_mapper is None:
tta_mapper = DatasetMapperTTA(cfg)
self.tta_mapper = tta_mapper
self.batch_size = batch_size
def __call__(self, batched_inputs):
"""
Same input/output format as :meth:`SemanticSegmentor.forward`
"""
def _maybe_read_image(dataset_dict):
ret = copy.copy(dataset_dict)
if "image" not in ret:
image = read_image(ret.pop("file_name"), self.model.input_format)
image = torch.from_numpy(np.ascontiguousarray(image.transpose(2, 0, 1))) # CHW
ret["image"] = image
if "height" not in ret and "width" not in ret:
ret["height"] = image.shape[1]
ret["width"] = image.shape[2]
return ret
processed_results = []
for x in batched_inputs:
result = self._inference_one_image(_maybe_read_image(x))
processed_results.append(result)
return processed_results
def _inference_one_image(self, input):
"""
Args:
input (dict): one dataset dict with "image" field being a CHW tensor
Returns:
dict: one output dict
"""
orig_shape = (input["height"], input["width"])
augmented_inputs, tfms = self._get_augmented_inputs(input)
final_predictions = None
count_predictions = 0
for input, tfm in zip(augmented_inputs, tfms):
count_predictions += 1
with torch.no_grad():
if final_predictions is None:
if any(isinstance(t, HFlipTransform) for t in tfm.transforms):
final_predictions = self.model([input])[0].pop("sem_seg").flip(dims=[2])
else:
final_predictions = self.model([input])[0].pop("sem_seg")
else:
if any(isinstance(t, HFlipTransform) for t in tfm.transforms):
final_predictions += self.model([input])[0].pop("sem_seg").flip(dims=[2])
else:
final_predictions += self.model([input])[0].pop("sem_seg")
final_predictions = final_predictions / count_predictions
return {"sem_seg": final_predictions}
def _get_augmented_inputs(self, input):
augmented_inputs = self.tta_mapper(input)
tfms = [x.pop("transforms") for x in augmented_inputs]
return augmented_inputs, tfms
|