File size: 22,452 Bytes
615e9f1
 
 
 
 
 
 
b76c717
615e9f1
9467fbe
64b088f
 
 
615e9f1
a60e278
 
615e9f1
b76c717
 
 
 
 
 
64b088f
 
556b7be
 
 
 
 
 
64b088f
 
 
556b7be
 
 
 
 
 
 
 
 
64b088f
 
 
 
 
 
 
 
 
 
 
556b7be
 
 
 
 
 
 
 
 
 
 
615e9f1
 
64b088f
 
 
 
 
 
 
 
 
 
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
 
 
 
 
 
 
 
 
 
615e9f1
 
 
 
64b088f
615e9f1
 
 
 
64b088f
 
 
 
 
 
 
 
 
 
ef9c221
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
 
 
615e9f1
64b088f
 
615e9f1
64b088f
 
 
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
 
 
 
 
 
 
 
 
 
615e9f1
 
 
 
 
 
 
 
 
 
 
 
64b088f
 
 
 
 
 
 
 
 
 
 
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
 
 
 
 
 
 
 
 
 
 
 
 
615e9f1
 
 
64b088f
615e9f1
64b088f
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
 
 
 
 
 
 
 
 
 
 
 
 
 
615e9f1
 
 
 
64b088f
615e9f1
 
 
 
 
64b088f
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
 
 
615e9f1
64b088f
 
 
 
 
 
 
 
 
 
 
615e9f1
 
 
 
 
 
64b088f
 
 
 
 
 
615e9f1
64b088f
 
615e9f1
64b088f
 
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
 
615e9f1
 
642c17f
 
 
 
 
64b088f
642c17f
64b088f
642c17f
 
 
615e9f1
 
 
64b088f
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
615e9f1
 
64b088f
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
615e9f1
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

import os
from azure.ai.vision.imageanalysis import ImageAnalysisClient
from azure.ai.vision.imageanalysis.models import VisualFeatures
from azure.core.credentials import AzureKeyCredential
import numpy as np
import networkx as nx
from modules.utils import class_dict, proportion_inside
import json
from modules.utils import rescale_boxes as rescale, is_vertical
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import logging

VISION_KEY = os.getenv("VISION_KEY")
VISION_ENDPOINT = os.getenv("VISION_ENDPOINT")

#If local execution
"""with open("VISION_KEY.json", "r") as json_file:
    json_data = json.load(json_file)
    
VISION_KEY = json_data["VISION_KEY"]
VISION_ENDPOINT = json_data["VISION_ENDPOINT"]"""



# Suppress specific warnings from transformers
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)

# Function to initialize the model and tokenizer
def initialize_model():
    """
    Initialize the tokenizer and model for sentiment analysis.
    """
    tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
    model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
    return tokenizer, model

# Initialize model and tokenizer
tokenizer, emotion_model = initialize_model()

# Function to perform sentiment analysis and return the highest scoring emotion and its score between positive and negative
def analyze_sentiment(sentence, tokenizer=tokenizer, model=emotion_model):
    """
    Analyze the sentiment of a given sentence using the initialized tokenizer and model.

    Parameters:
    - sentence (str): The input sentence to analyze.
    - tokenizer (AutoTokenizer): The tokenizer for processing the sentence.
    - model (AutoModelForSequenceClassification): The model for sentiment analysis.

    Returns:
    - tuple: The highest scoring emotion ('positive' or 'negative') and its corresponding score.
    """
    inputs = tokenizer(sentence, return_tensors="pt")
    outputs = model(**inputs)
    probs = torch.nn.functional.softmax(outputs.logits, dim=-1).squeeze().tolist()
    labels = ["negative", "neutral", "positive"]
    results = dict(zip(labels, probs))
    
    # Filter out the neutral score and get the highest score between positive and negative
    relevant_results = {k: results[k] for k in ["positive", "negative"]}
    highest_emotion = max(relevant_results, key=relevant_results.get)
    highest_score = relevant_results[highest_emotion]
    return highest_emotion, highest_score

def sample_ocr_image_file(image_data):
    """
    Sample OCR function to analyze an image file and extract text using Azure's Computer Vision service.

    Parameters:
    - image_data (bytes): The image data in bytes.

    Returns:
    - result: The OCR result from the Computer Vision service.
    """
    # Set the values of your computer vision endpoint and computer vision key as environment variables:
    try:
        endpoint = VISION_ENDPOINT
        key = VISION_KEY
    except KeyError:
        print("Missing environment variable 'VISION_ENDPOINT' or 'VISION_KEY'")
        print("Set them before running this sample.")
        exit()

    # Create an Image Analysis client
    client = ImageAnalysisClient(
        endpoint=endpoint,
        credential=AzureKeyCredential(key)
    )

    # Extract text (OCR) from an image stream. This will be a synchronously (blocking) call.
    result = client.analyze(
        image_data=image_data,
        visual_features=[VisualFeatures.READ]
    )
                
    return result


def text_prediction(image):
    """
    Perform OCR on an image to extract text.

    Parameters:
    - image: The image to process.

    Returns:
    - ocr_result: The OCR result.
    """
    # Transform the image into a byte array
    image.save('temp.jpg')
    with open('temp.jpg', 'rb') as f:
        image_data = f.read()
    ocr_result = sample_ocr_image_file(image_data)
    # Delete the temporary image
    os.remove('temp.jpg')
    return ocr_result

def filter_text(ocr_result, threshold=0.5):
    """
    Filter and process the OCR results to remove unwanted characters and low-confidence words.

    Parameters:
    - ocr_result: The OCR result.
    - threshold (float): The confidence threshold for filtering words.

    Returns:
    - list_of_lines: Processed text lines and their bounding boxes.
    """
    words_to_cancel = {"-","--","---","+",".",",","#","@","!","?","(",")","[","]","{","}","<",">","/","\\","|","-","_","=","&","^","%","$","£","€","¥","¢","¤","§","©","®","™","°","±","×","÷","¶","∆","∏","∑","∞","√","∫","≈","≠","≤","≥","≡","∼"}
    # Add every other one-letter word to the list of words to cancel, except 'I' and 'a'
    for letter in "bcdefghjklmnopqrstuvwxyz1234567890":  # All lowercase letters except 'a'
        words_to_cancel.add(letter)
        words_to_cancel.add("i")
        words_to_cancel.add(letter.upper())  # Add the uppercase version as well
    characters_to_cancel = {"+", "<", ">"}  # Characters to cancel
    
    list_of_lines = []

    for block in ocr_result['readResult']['blocks']:
        for line in block['lines']:
            line_text = []
            x_min, y_min = float('inf'), float('inf')
            x_max, y_max = float('-inf'), float('-inf')
            for word in line['words']:
                if word['text'] in words_to_cancel or any(disallowed_char in word['text'] for disallowed_char in characters_to_cancel):
                    continue
                if word['confidence'] > threshold:
                    if word['text']:
                        line_text.append(word['text'])
                        x = [point['x'] for point in word['boundingPolygon']]
                        y = [point['y'] for point in word['boundingPolygon']]
                        x_min = min(x_min, min(x))
                        y_min = min(y_min, min(y))
                        x_max = max(x_max, max(x))
                        y_max = max(y_max, max(y))
            if line_text:  # If there are valid words in the line
                list_of_lines.append({
                    'text': ' '.join(line_text),
                    'boundingBox': [x_min,y_min,x_max,y_max]
                })
    
    list_text = []
    list_bbox = []
    for i in range(len(list_of_lines)):
        list_text.append(list_of_lines[i]['text'])
    for i in range(len(list_of_lines)):
        list_bbox.append(list_of_lines[i]['boundingBox'])

    list_of_lines = [list_bbox, list_text]

    return list_of_lines


def get_box_points(box):
    """
    Returns all critical points of a box: corners and midpoints of edges.

    Parameters:
    - box (array): Bounding box coordinates [xmin, ymin, xmax, ymax].

    Returns:
    - numpy.array: Array of critical points.
    """
    xmin, ymin, xmax, ymax = box
    return np.array([
        [xmin, ymin],  # Bottom-left corner
        [xmax, ymin],  # Bottom-right corner
        [xmin, ymax],  # Top-left corner
        [xmax, ymax],  # Top-right corner
        [(xmin + xmax) / 2, ymin],  # Midpoint of bottom edge
        [(xmin + xmax) / 2, ymax],  # Midpoint of top edge
        [xmin, (ymin + ymax) / 2],  # Midpoint of left edge
        [xmax, (ymin + ymax) / 2]   # Midpoint of right edge
    ])

def min_distance_between_boxes(box1, box2):
    """
    Computes the minimum distance between two boxes considering all critical points.

    Parameters:
    - box1 (array): First bounding box coordinates.
    - box2 (array): Second bounding box coordinates.

    Returns:
    - float: The minimum distance between the two boxes.
    """
    points1 = get_box_points(box1)
    points2 = get_box_points(box2)
    
    min_dist = float('inf')
    for point1 in points1:
        for point2 in points2:
            dist = np.linalg.norm(point1 - point2)
            if dist < min_dist:
                min_dist = dist
    return min_dist

def are_close(box1, box2, threshold=50):
    """
    Determines if boxes are close based on their corners and center points.

    Parameters:
    - box1 (array): First bounding box coordinates.
    - box2 (array): Second bounding box coordinates.
    - threshold (int): Distance threshold for determining closeness.

    Returns:
    - bool: True if boxes are close, otherwise False.
    """
    corners1 = np.array([
        [box1[0], box1[1]], [box1[0], box1[3]], [box1[2], box1[1]], [box1[2], box1[3]],
        [(box1[0]+box1[2])/2, box1[1]], [(box1[0]+box1[2])/2, box1[3]],
        [box1[0], (box1[1]+box1[3])/2], [box1[2], (box1[1]+box1[3])/2]
    ])
    corners2 = np.array([
        [box2[0], box2[1]], [box2[0], box2[3]], [box2[2], box2[1]], [box2[2], box2[3]],
        [(box2[0]+box2[2])/2, box2[1]], [(box2[0]+box2[2])/2, box2[3]],
        [box2[0], (box2[1]+box2[3])/2], [box2[2], (box2[1]+box2[3])/2]
    ])
    for c1 in corners1:
        for c2 in corners2:
            if np.linalg.norm(c1 - c2) < threshold:
                return True
    return False

def find_closest_box(text_box, all_boxes, labels, threshold, iou_threshold=0.5):
    """
    Find the closest box to the given text box within a specified threshold.

    Parameters:
    - text_box (array): The text box coordinates.
    - all_boxes (list): List of all bounding boxes.
    - labels (list): List of labels corresponding to the boxes.
    - threshold (float): Distance threshold for determining closeness.
    - iou_threshold (float): IoU threshold for determining if a text is inside a sequenceFlow.

    Returns:
    - int or None: Index of the closest box or None if no box is close enough.
    """
    min_distance = float('inf')
    closest_index = None

    # Check if the text is inside a sequenceFlow
    for j in range(len(all_boxes)):
        if proportion_inside(text_box, all_boxes[j]) > iou_threshold and labels[j] == list(class_dict.values()).index('sequenceFlow'):
            return j
    
    for i, box in enumerate(all_boxes):
        # Compute the center of both boxes
        center_text = np.array([(text_box[0] + text_box[2]) / 2, (text_box[1] + text_box[3]) / 2])
        center_box = np.array([(box[0] + box[2]) / 2, (box[1] + box[3]) / 2])
        
        # Calculate Euclidean distance between centers
        distance = np.linalg.norm(center_text - center_box)
        
        # Update closest box if this box is nearer
        if distance < min_distance:
            min_distance = distance
            closest_index = i

    # Check if the closest box found is within the acceptable threshold
    if min_distance < threshold:
        return closest_index
    
    return None


def group_texts(task_boxes, text_boxes, texts, min_dist=50, iou_threshold=0.8, percentage_thresh=0.8):
    """
    Maps text boxes to task boxes and groups texts within each task based on proximity.

    Parameters:
    - task_boxes (list): List of task bounding boxes.
    - text_boxes (list): List of text bounding boxes.
    - texts (list): List of texts corresponding to the text boxes.
    - min_dist (float): Minimum distance threshold for grouping.
    - iou_threshold (float): IoU threshold for determining if text is inside a task box.
    - percentage_thresh (float): Percentage threshold for determining if text boxes are close.

    Returns:
    - tuple: Grouped task-related texts, their bounding boxes, grouped information texts, and their bounding boxes.
    """
    G = nx.Graph()

    # Map each text box to the nearest task box
    task_to_texts = {i: [] for i in range(len(task_boxes))}
    information_texts = []  # Texts not inside any task box
    text_to_task_mapped = [False] * len(text_boxes)

    for idx, text_box in enumerate(text_boxes):
        mapped = False
        for jdx, task_box in enumerate(task_boxes):
            if proportion_inside(text_box, task_box) > iou_threshold:
                task_to_texts[jdx].append(idx)
                text_to_task_mapped[idx] = True
                mapped = True
                break
        if not mapped:
            information_texts.append(idx)

    all_grouped_texts = []
    sentence_boxes = []  # Store the bounding box for each sentence

    # Process texts for each task
    for task_texts in task_to_texts.values():
        G.clear()
        for i in task_texts:
            G.add_node(i)
            for j in task_texts:
                if i != j and are_close(text_boxes[i], text_boxes[j]) and not is_vertical(text_boxes[i]) and not is_vertical(text_boxes[j]):
                    G.add_edge(i, j)

        groups = list(nx.connected_components(G))
        for group in groups:
            group = list(group)
            lines = {}
            for idx in group:
                y_center = (text_boxes[idx][1] + text_boxes[idx][3]) / 2
                found_line = False
                for line in lines:
                    if abs(y_center - line) < (text_boxes[idx][3] - text_boxes[idx][1]) / 2:
                        lines[line].append(idx)
                        found_line = True
                        break
                if not found_line:
                    lines[y_center] = [idx]

            sorted_lines = sorted(lines.keys())
            grouped_texts = []
            min_x = min_y = float('inf')
            max_x = max_y = -float('inf')

            for line in sorted_lines:
                sorted_indices = sorted(lines[line], key=lambda idx: text_boxes[idx][0])
                line_text = ' '.join(texts[idx] for idx in sorted_indices)
                grouped_texts.append(line_text)

                for idx in sorted_indices:
                    box = text_boxes[idx]
                    min_x = min(min_x-5, box[0]-5)
                    min_y = min(min_y-5, box[1]-5)
                    max_x = max(max_x+5, box[2]+5)
                    max_y = max(max_y+5, box[3]+5)

            all_grouped_texts.append(' '.join(grouped_texts))
            sentence_boxes.append([min_x, min_y, max_x, max_y])

    # Group information texts
    G.clear()
    info_sentence_boxes = []

    for i in information_texts:
        G.add_node(i)
        for j in information_texts:
            if i != j and are_close(text_boxes[i], text_boxes[j], percentage_thresh * min_dist) and not is_vertical(text_boxes[i]) and not is_vertical(text_boxes[j]):
                G.add_edge(i, j)

    info_groups = list(nx.connected_components(G))
    information_grouped_texts = []
    for group in info_groups:
        group = list(group)
        lines = {}
        for idx in group:
            y_center = (text_boxes[idx][1] + text_boxes[idx][3]) / 2
            found_line = False
            for line in lines:
                if abs(y_center - line) < (text_boxes[idx][3] - text_boxes[idx][1]) / 2:
                    lines[line].append(idx)
                    found_line = True
                    break
            if not found_line:
                lines[y_center] = [idx]

        sorted_lines = sorted(lines.keys())
        grouped_texts = []
        min_x = min_y = float('inf')
        max_x = max_y = -float('inf')

        for line in sorted_lines:
            sorted_indices = sorted(lines[line], key=lambda idx: text_boxes[idx][0])
            line_text = ' '.join(texts[idx] for idx in sorted_indices)
            grouped_texts.append(line_text)

            for idx in sorted_indices:
                box = text_boxes[idx]
                min_x = min(min_x, box[0])
                min_y = min(min_y, box[1])
                max_x = max(max_x, box[2])
                max_y = max(max_y, box[3])

        information_grouped_texts.append(' '.join(grouped_texts))
        info_sentence_boxes.append([min_x, min_y, max_x, max_y])

    return all_grouped_texts, sentence_boxes, information_grouped_texts, info_sentence_boxes


def mapping_text(full_pred, text_pred, print_sentences=False, percentage_thresh=0.6, scale=1.0, iou_threshold=0.5):
    """
    Map the extracted texts to the predicted bounding boxes.

    Parameters:
    - full_pred (dict): Full prediction dictionary containing boxes, labels, BPMN IDs, and pool dictionary.
    - text_pred (list): List containing text predictions and their bounding boxes.
    - print_sentences (bool): Whether to print the sentences and their bounding boxes.
    - percentage_thresh (float): Percentage threshold for determining closeness.
    - scale (float): Scale factor for rescaling bounding boxes.
    - iou_threshold (float): IoU threshold for determining if text is inside a bounding box.

    Returns:
    - dict: Text mapping for BPMN elements.
    """
    boxes = rescale(scale, full_pred['boxes'])

    min_dist = 200
    labels = full_pred['labels']
    avoid = [list(class_dict.values()).index('pool'), list(class_dict.values()).index('lane'), list(class_dict.values()).index('sequenceFlow'), list(class_dict.values()).index('messageFlow'), list(class_dict.values()).index('dataAssociation')]
    for i in range(len(boxes)):
        box1 = boxes[i]
        if labels[i] in avoid:
            continue
        for j in range(i + 1, len(boxes)):
            box2 = boxes[j]
            if labels[j] in avoid:
                continue
            dist = min_distance_between_boxes(box1, box2)
            min_dist = min(min_dist, dist)

    # Print the minimum distance between boxes
    # print("Minimum distance between boxes:", min_dist)

    text_pred[0] = rescale(scale, text_pred[0])
    task_boxes = [box for i, box in enumerate(boxes) if full_pred['labels'][i] == list(class_dict.values()).index('task')]
    grouped_sentences, sentence_bounding_boxes, info_texts, info_boxes = group_texts(task_boxes, text_pred[0], text_pred[1], min_dist=min_dist)
    BPMN_id = set(full_pred['BPMN_id'])  # This ensures uniqueness of task names
    text_mapping = {id: '' for id in BPMN_id}

    if print_sentences:
        for sentence, box in zip(grouped_sentences, sentence_bounding_boxes):
            print("Task-related Text:", sentence)
            print("Bounding Box:", box)
        print("Information Texts:", info_texts)
        print("Information Bounding Boxes:", info_boxes)

    # Map the grouped sentences to the corresponding task
    for i in range(len(sentence_bounding_boxes)):
        for j in range(len(boxes)):
            if proportion_inside(sentence_bounding_boxes[i], boxes[j]) > iou_threshold and full_pred['labels'][j] == list(class_dict.values()).index('task'):
                text_mapping[full_pred['BPMN_id'][j]] = grouped_sentences[i]

    # Map the grouped sentences to the corresponding pool
    for key, elements in full_pred['pool_dict'].items():
        if len(elements) > 0:
            continue
        else:
            for i in range(len(info_boxes)):
                # Find the position of the key in BPMN_id
                position = list(full_pred['BPMN_id']).index(key)
                if proportion_inside(info_boxes[i], boxes[position]) > iou_threshold:
                    text_mapping[key] = info_texts[i]
                    info_texts[i] = ''  # Clear the text to avoid re-use

    for i in range(len(info_boxes)):
        if is_vertical(info_boxes[i]):
            for j in range(len(boxes)):
                if proportion_inside(info_boxes[i], boxes[j]) > 0 and full_pred['labels'][j] == list(class_dict.values()).index('pool'):
                    print("Text:", info_texts[i], "associate with ", full_pred['BPMN_id'][j])
                    bpmn_id = full_pred['BPMN_id'][j]
                    # Append new text or create new entry if not existing
                    if bpmn_id in text_mapping:
                        text_mapping[bpmn_id] += " " + info_texts[i]  # Append text with a space in between
                    else:
                        text_mapping[bpmn_id] = info_texts[i]
                    info_texts[i] = ''  # Clear the text to avoid re-use

    # Map the grouped sentences to the corresponding object
    for i in range(len(info_boxes)):
        if is_vertical(info_boxes[i]):
            continue  # Skip if the text is vertical
        for j in range(len(boxes)):
            if info_texts[i] == '':
                continue  # Skip if there's no text        
            if (proportion_inside(info_boxes[i], boxes[j]) > 0 or are_close(info_boxes[i], boxes[j], threshold=percentage_thresh * min_dist)) and (full_pred['labels'][j] == list(class_dict.values()).index('event') 
                                                                             or full_pred['labels'][j] == list(class_dict.values()).index('messageEvent') 
                                                                             or full_pred['labels'][j] == list(class_dict.values()).index('timerEvent')
                                                                             or full_pred['labels'][j] == list(class_dict.values()).index('dataObject')):
                bpmn_id = full_pred['BPMN_id'][j]
                # Append new text or create new entry if not existing
                if bpmn_id in text_mapping:
                    text_mapping[bpmn_id] += " " + info_texts[i]  # Append text with a space in between
                else:
                    text_mapping[bpmn_id] = info_texts[i]
                info_texts[i] = ''  # Clear the text to avoid re-use

    # Map the grouped sentences to the corresponding flow
    for i in range(len(info_boxes)):
        if info_texts[i] == '' or is_vertical(info_boxes[i]):
            continue  # Skip if there's no text
        # Find the closest box within the defined threshold
        closest_index = find_closest_box(info_boxes[i], boxes, full_pred['labels'], threshold=4 * min_dist) 
        if closest_index is not None and (full_pred['labels'][closest_index] == list(class_dict.values()).index('sequenceFlow') or full_pred['labels'][closest_index] == list(class_dict.values()).index('messageFlow')):
            bpmn_id = full_pred['BPMN_id'][closest_index]
            # Append new text or create new entry if not existing
            if bpmn_id in text_mapping:
                text_mapping[bpmn_id] += " " + info_texts[i]  # Append text with a space in between
            else:
                text_mapping[bpmn_id] = info_texts[i]
            info_texts[i] = ''  # Clear the text to avoid re-use

    if print_sentences:
        print("Text Mapping:", text_mapping)
        print("Information Texts left:", info_texts)
                    
    return text_mapping