Spaces:
Running
Running
change folders
Browse files- app.py +13 -17
- flask.py +0 -6
- OCR.py β modules/OCR.py +9 -3
- modules/__init__.py +0 -0
- display.py β modules/display.py +2 -2
- eval.py β modules/eval.py +2 -2
- htlm_webpage.py β modules/htlm_webpage.py +0 -0
- toXML.py β modules/toXML.py +1 -1
- train.py β modules/train.py +2 -2
- utils.py β modules/utils.py +0 -0
app.py
CHANGED
@@ -1,33 +1,29 @@
|
|
1 |
import streamlit as st
|
2 |
import streamlit.components.v1 as components
|
3 |
-
from PIL import Image
|
4 |
import torch
|
5 |
from torchvision.transforms import functional as F
|
6 |
-
from PIL import Image, ImageEnhance
|
7 |
-
from htlm_webpage import display_bpmn_xml
|
8 |
import gc
|
9 |
import psutil
|
10 |
import copy
|
11 |
-
|
12 |
-
|
13 |
-
from OCR import text_prediction, filter_text, mapping_text, rescale
|
14 |
-
from train import prepare_model
|
15 |
-
from utils import draw_annotations, create_loader, class_dict, arrow_dict, object_dict
|
16 |
-
from toXML import calculate_pool_bounds, add_diagram_elements
|
17 |
-
from pathlib import Path
|
18 |
-
from toXML import create_bpmn_object, create_flow_element
|
19 |
import xml.etree.ElementTree as ET
|
20 |
import numpy as np
|
21 |
-
from display import draw_stream
|
22 |
-
from eval import full_prediction
|
23 |
-
from streamlit_image_comparison import image_comparison
|
24 |
from xml.dom import minidom
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
from streamlit_cropper import st_cropper
|
26 |
from streamlit_drawable_canvas import st_canvas
|
27 |
from streamlit_image_select import image_select
|
28 |
-
|
29 |
-
from train import get_faster_rcnn_model, get_arrow_model
|
30 |
-
import gdown
|
31 |
|
32 |
def get_memory_usage():
|
33 |
process = psutil.Process()
|
|
|
1 |
import streamlit as st
|
2 |
import streamlit.components.v1 as components
|
3 |
+
from PIL import Image, ImageEnhance
|
4 |
import torch
|
5 |
from torchvision.transforms import functional as F
|
|
|
|
|
6 |
import gc
|
7 |
import psutil
|
8 |
import copy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import xml.etree.ElementTree as ET
|
10 |
import numpy as np
|
|
|
|
|
|
|
11 |
from xml.dom import minidom
|
12 |
+
from pathlib import Path
|
13 |
+
import gdown
|
14 |
+
|
15 |
+
from modules.htlm_webpage import display_bpmn_xml
|
16 |
+
from modules.OCR import text_prediction, filter_text, mapping_text, rescale
|
17 |
+
from modules.utils import class_dict, arrow_dict, object_dict, find_closest_object
|
18 |
+
from modules.toXML import calculate_pool_bounds, add_diagram_elements, create_bpmn_object, create_flow_element
|
19 |
+
from modules.display import draw_stream
|
20 |
+
from modules.eval import full_prediction
|
21 |
+
from modules.train import get_faster_rcnn_model, get_arrow_model
|
22 |
+
from streamlit_image_comparison import image_comparison
|
23 |
from streamlit_cropper import st_cropper
|
24 |
from streamlit_drawable_canvas import st_canvas
|
25 |
from streamlit_image_select import image_select
|
26 |
+
|
|
|
|
|
27 |
|
28 |
def get_memory_usage():
|
29 |
process = psutil.Process()
|
flask.py
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
from flask import Flask
|
2 |
-
app = Flask(__name__)
|
3 |
-
|
4 |
-
@app.route("/")
|
5 |
-
def hello():
|
6 |
-
return "Hello World!\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
OCR.py β modules/OCR.py
RENAMED
@@ -6,15 +6,21 @@ from azure.core.credentials import AzureKeyCredential
|
|
6 |
import time
|
7 |
import numpy as np
|
8 |
import networkx as nx
|
9 |
-
from
|
10 |
-
from utils import class_dict, proportion_inside
|
11 |
import json
|
12 |
-
from utils import rescale_boxes as rescale
|
|
|
13 |
|
14 |
|
15 |
VISION_KEY = os.getenv("VISION_KEY")
|
16 |
VISION_ENDPOINT = os.getenv("VISION_ENDPOINT")
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def sample_ocr_image_file(image_data):
|
20 |
# Set the values of your computer vision endpoint and computer vision key
|
|
|
6 |
import time
|
7 |
import numpy as np
|
8 |
import networkx as nx
|
9 |
+
from modules.utils import class_dict, proportion_inside
|
|
|
10 |
import json
|
11 |
+
from modules.utils import rescale_boxes as rescale
|
12 |
+
import streamlit as st
|
13 |
|
14 |
|
15 |
VISION_KEY = os.getenv("VISION_KEY")
|
16 |
VISION_ENDPOINT = os.getenv("VISION_ENDPOINT")
|
17 |
|
18 |
+
#If local execution
|
19 |
+
"""with open("VISION_KEY.json", "r") as json_file:
|
20 |
+
json_data = json.load(json_file)
|
21 |
+
|
22 |
+
VISION_KEY = json_data["VISION_KEY"]
|
23 |
+
VISION_ENDPOINT = json_data["VISION_ENDPOINT"]"""
|
24 |
|
25 |
def sample_ocr_image_file(image_data):
|
26 |
# Set the values of your computer vision endpoint and computer vision key
|
modules/__init__.py
ADDED
File without changes
|
display.py β modules/display.py
RENAMED
@@ -1,9 +1,9 @@
|
|
1 |
-
from utils import draw_annotations, create_loader, class_dict, resize_boxes, resize_keypoints, find_other_keypoint
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
import matplotlib.pyplot as plt
|
6 |
-
from OCR import group_texts
|
7 |
|
8 |
|
9 |
|
|
|
1 |
+
from modules.utils import draw_annotations, create_loader, class_dict, resize_boxes, resize_keypoints, find_other_keypoint
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
import matplotlib.pyplot as plt
|
6 |
+
from modules.OCR import group_texts
|
7 |
|
8 |
|
9 |
|
eval.py β modules/eval.py
RENAMED
@@ -1,8 +1,8 @@
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
-
from utils import class_dict, object_dict, arrow_dict, find_closest_object, find_other_keypoint, filter_overlap_boxes, iou
|
4 |
from tqdm import tqdm
|
5 |
-
from toXML import create_BPMN_id
|
6 |
|
7 |
|
8 |
|
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
+
from modules.utils import class_dict, object_dict, arrow_dict, find_closest_object, find_other_keypoint, filter_overlap_boxes, iou
|
4 |
from tqdm import tqdm
|
5 |
+
from modules.toXML import create_BPMN_id
|
6 |
|
7 |
|
8 |
|
htlm_webpage.py β modules/htlm_webpage.py
RENAMED
File without changes
|
toXML.py β modules/toXML.py
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
import xml.etree.ElementTree as ET
|
2 |
-
from utils import class_dict
|
3 |
|
4 |
def rescale(scale, boxes):
|
5 |
for i in range(len(boxes)):
|
|
|
1 |
import xml.etree.ElementTree as ET
|
2 |
+
from modules.utils import class_dict
|
3 |
|
4 |
def rescale(scale, boxes):
|
5 |
for i in range(len(boxes)):
|
train.py β modules/train.py
RENAMED
@@ -7,7 +7,7 @@ import torch
|
|
7 |
import torchvision.transforms.functional as F
|
8 |
import matplotlib.pyplot as plt
|
9 |
|
10 |
-
from eval import main_evaluation
|
11 |
from torch.optim import SGD, AdamW
|
12 |
from torch.utils.data import DataLoader, Dataset, Subset, ConcatDataset
|
13 |
from torch.utils.data.dataloader import default_collate
|
@@ -15,7 +15,7 @@ from torchvision.models.detection import keypointrcnn_resnet50_fpn, KeypointRCNN
|
|
15 |
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
|
16 |
from torchvision.models.detection.keypoint_rcnn import KeypointRCNNPredictor
|
17 |
from tqdm import tqdm
|
18 |
-
from utils import write_results
|
19 |
|
20 |
|
21 |
|
|
|
7 |
import torchvision.transforms.functional as F
|
8 |
import matplotlib.pyplot as plt
|
9 |
|
10 |
+
from modules.eval import main_evaluation
|
11 |
from torch.optim import SGD, AdamW
|
12 |
from torch.utils.data import DataLoader, Dataset, Subset, ConcatDataset
|
13 |
from torch.utils.data.dataloader import default_collate
|
|
|
15 |
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
|
16 |
from torchvision.models.detection.keypoint_rcnn import KeypointRCNNPredictor
|
17 |
from tqdm import tqdm
|
18 |
+
from modules.utils import write_results
|
19 |
|
20 |
|
21 |
|
utils.py β modules/utils.py
RENAMED
File without changes
|