File size: 12,030 Bytes
0d3b04c f8aeaba 0d3b04c d5a49b6 0d3b04c 6bcfa6c 0d3b04c f8aeaba 0d3b04c f8aeaba 0d3b04c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# Copyright (c) 2023-2024, Qi Zuo
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from PIL import Image
import numpy as np
import gradio as gr
import base64
import subprocess
import os
def install_cuda_toolkit():
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
# # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
# CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
# subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
# subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
# subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
install_cuda_toolkit()
def launch_pretrained():
from huggingface_hub import snapshot_download, hf_hub_download
hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='assets.tar', local_dir="./")
os.system("tar -xvf assets.tar && rm assets.tar")
hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='LHM-0.5B.tar', local_dir="./")
os.system("tar -xvf LHM-0.5B.tar && rm LHM-0.5B.tar")
hf_hub_download(repo_id="DyrusQZ/LHM_Runtime", repo_type='model', filename='LHM_prior_model.tar', local_dir="./")
os.system("tar -xvf LHM_prior_model.tar && rm LHM_prior_model.tar")
def launch_env_not_compile_with_cuda():
os.system("pip install chumpy")
os.system("pip uninstall -y basicsr")
os.system("pip install git+https://github.com/hitsz-zuoqi/BasicSR/")
os.system("pip install git+https://github.com/hitsz-zuoqi/sam2/")
os.system("pip install git+https://github.com/ashawkey/diff-gaussian-rasterization/")
os.system("pip install git+https://github.com/camenduru/simple-knn/")
os.system("pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt251/download.html")
# def launch_env_compile_with_cuda():
# # simple_knn
# os.system("wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/simple_knn.zip && wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/simple_knn-0.0.0.dist-info.zip")
# os.system("unzip simple_knn.zip && unzip simple_knn-0.0.0.dist-info.zip")
# os.system("mv simple_knn /usr/local/lib/python3.10/site-packages/")
# os.system("mv simple_knn-0.0.0.dist-info /usr/local/lib/python3.10/site-packages/")
# # diff_gaussian
# os.system("wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/diff_gaussian_rasterization.zip && wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/diff_gaussian_rasterization-0.0.0.dist-info.zip")
# os.system("unzip diff_gaussian_rasterization.zip && unzip diff_gaussian_rasterization-0.0.0.dist-info.zip")
# os.system("mv diff_gaussian_rasterization /usr/local/lib/python3.10/site-packages/")
# os.system("mv diff_gaussian_rasterization-0.0.0.dist-info /usr/local/lib/python3.10/site-packages/")
# # pytorch3d
# os.system("wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/pytorch3d.zip && wget oss://virutalbuy-public/share/aigc3d/data/for_lingteng/LHM/pytorch3d-0.7.8.dist-info.zip")
# os.system("unzip pytorch3d.zip && unzip pytorch3d-0.7.8.dist-info.zip")
# os.system("mv pytorch3d /usr/local/lib/python3.10/site-packages/")
# os.system("mv pytorch3d-0.7.8.dist-info /usr/local/lib/python3.10/site-packages/")
launch_pretrained()
launch_env_not_compile_with_cuda()
# launch_env_compile_with_cuda()
def assert_input_image(input_image):
if input_image is None:
raise gr.Error("No image selected or uploaded!")
def prepare_working_dir():
import tempfile
working_dir = tempfile.TemporaryDirectory()
return working_dir
def init_preprocessor():
from LHM.utils.preprocess import Preprocessor
global preprocessor
preprocessor = Preprocessor()
def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir):
image_raw = os.path.join(working_dir.name, "raw.png")
with Image.fromarray(image_in) as img:
img.save(image_raw)
image_out = os.path.join(working_dir.name, "rembg.png")
success = preprocessor.preprocess(image_path=image_raw, save_path=image_out, rmbg=remove_bg, recenter=recenter)
assert success, f"Failed under preprocess_fn!"
return image_out
def get_image_base64(path):
with open(path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
return f"data:image/png;base64,{encoded_string}"
def demo_lhm(infer_impl):
def core_fn(image: str, video_params, working_dir):
image_raw = os.path.join(working_dir.name, "raw.png")
with Image.fromarray(image) as img:
img.save(image_raw)
base_vid = os.path.basename(video_params).split("_")[0]
smplx_params_dir = os.path.join("./assets/sample_motion", base_vid, "smplx_params")
dump_video_path = os.path.join(working_dir.name, "output.mp4")
dump_image_path = os.path.join(working_dir.name, "output.png")
# print(video_params)
status = infer_impl(
gradio_demo_image=image_raw,
gradio_motion_file=smplx_params_dir,
gradio_masked_image=dump_image_path,
gradio_video_save_path=dump_video_path
)
if status:
return dump_image_path, dump_video_path
else:
return None, None
_TITLE = '''LHM: Large Animatable Human Model'''
_DESCRIPTION = '''
<strong>Reconstruct a human avatar in 0.2 seconds with A100!</strong>
'''
with gr.Blocks(analytics_enabled=False) as demo:
# </div>
logo_url = "./assets/rgba_logo_new.png"
logo_base64 = get_image_base64(logo_url)
gr.HTML(
f"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1> <img src="{logo_base64}" style='height:35px; display:inline-block;'/> Large Animatable Human Model </h1>
</div>
</div>
"""
)
gr.HTML(
"""<p><h4 style="color: red;"> Notes: Please input full-body image in case of detection errors.</h4></p>"""
)
# DISPLAY
with gr.Row():
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_input_image"):
with gr.TabItem('Input Image'):
with gr.Row():
input_image = gr.Image(label="Input Image", image_mode="RGBA", height=480, width=270, sources="upload", type="numpy", elem_id="content_image")
# EXAMPLES
with gr.Row():
examples = [
['assets/sample_input/joker.jpg'],
['assets/sample_input/anime.png'],
['assets/sample_input/basket.png'],
['assets/sample_input/ai_woman1.JPG'],
['assets/sample_input/anime2.JPG'],
['assets/sample_input/anime3.JPG'],
['assets/sample_input/boy1.png'],
['assets/sample_input/choplin.jpg'],
['assets/sample_input/eins.JPG'],
['assets/sample_input/girl1.png'],
['assets/sample_input/girl2.png'],
['assets/sample_input/robot.jpg'],
]
gr.Examples(
examples=examples,
inputs=[input_image],
examples_per_page=20,
)
with gr.Column():
with gr.Tabs(elem_id="openlrm_input_video"):
with gr.TabItem('Input Video'):
with gr.Row():
video_input = gr.Video(label="Input Video",height=480, width=270, interactive=False)
examples = [
# './assets/sample_motion/danaotiangong/danaotiangong_origin.mp4',
'./assets/sample_motion/ex5/ex5_origin.mp4',
'./assets/sample_motion/girl2/girl2_origin.mp4',
'./assets/sample_motion/jntm/jntm_origin.mp4',
'./assets/sample_motion/mimo1/mimo1_origin.mp4',
'./assets/sample_motion/mimo2/mimo2_origin.mp4',
'./assets/sample_motion/mimo4/mimo4_origin.mp4',
'./assets/sample_motion/mimo5/mimo5_origin.mp4',
'./assets/sample_motion/mimo6/mimo6_origin.mp4',
'./assets/sample_motion/nezha/nezha_origin.mp4',
'./assets/sample_motion/taiji/taiji_origin.mp4'
]
gr.Examples(
examples=examples,
inputs=[video_input],
examples_per_page=20,
)
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_processed_image"):
with gr.TabItem('Processed Image'):
with gr.Row():
processed_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", height=480, width=270, interactive=False)
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_render_video"):
with gr.TabItem('Rendered Video'):
with gr.Row():
output_video = gr.Video(label="Rendered Video", format="mp4", height=480, width=270, autoplay=True)
# SETTING
with gr.Row():
with gr.Column(variant='panel', scale=1):
submit = gr.Button('Generate', elem_id="openlrm_generate", variant='primary')
working_dir = gr.State()
submit.click(
fn=assert_input_image,
inputs=[input_image],
queue=False,
).success(
fn=prepare_working_dir,
outputs=[working_dir],
queue=False,
).success(
fn=core_fn,
inputs=[input_image, video_input, working_dir], # video_params refer to smpl dir
outputs=[processed_image, output_video],
)
demo.queue()
demo.launch()
def launch_gradio_app():
os.environ.update({
"APP_ENABLED": "1",
"APP_MODEL_NAME": "./exps/releases/video_human_benchmark/human-lrm-500M/step_060000/",
"APP_INFER": "./configs/inference/human-lrm-500M.yaml",
"APP_TYPE": "infer.human_lrm",
"NUMBA_THREADING_LAYER": 'omp',
})
from LHM.runners import REGISTRY_RUNNERS
RunnerClass = REGISTRY_RUNNERS[os.getenv("APP_TYPE")]
with RunnerClass() as runner:
demo_lhm(infer_impl=runner.infer)
if __name__ == '__main__':
launch_gradio_app()
|