File size: 2,272 Bytes
dfd6145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from smolagents import (
    CodeAgent,
    InferenceClientModel,
    LiteLLMModel,
    OpenAIServerModel,
    ToolCallingAgent,
    TransformersModel,
    tool,
)


# Choose which inference type to use!

available_inferences = ["inference_client", "transformers", "ollama", "litellm", "openai"]
chosen_inference = "inference_client"

print(f"Chose model: '{chosen_inference}'")

if chosen_inference == "inference_client":
    model = InferenceClientModel(model_id="meta-llama/Llama-3.3-70B-Instruct", provider="nebius")

elif chosen_inference == "transformers":
    model = TransformersModel(model_id="HuggingFaceTB/SmolLM2-1.7B-Instruct", device_map="auto", max_new_tokens=1000)

elif chosen_inference == "ollama":
    model = LiteLLMModel(
        model_id="ollama_chat/llama3.2",
        api_base="http://localhost:11434",  # replace with remote open-ai compatible server if necessary
        api_key="your-api-key",  # replace with API key if necessary
        num_ctx=8192,  # ollama default is 2048 which will often fail horribly. 8192 works for easy tasks, more is better. Check https://huggingface.co/spaces/NyxKrage/LLM-Model-VRAM-Calculator to calculate how much VRAM this will need for the selected model.
    )

elif chosen_inference == "litellm":
    # For anthropic: change model_id below to 'anthropic/claude-3-5-sonnet-latest'
    model = LiteLLMModel(model_id="gpt-4o")

elif chosen_inference == "openai":
    # For anthropic: change model_id below to 'anthropic/claude-3-5-sonnet-latest'
    model = OpenAIServerModel(model_id="gpt-4o")


@tool
def get_weather(location: str, celsius: bool | None = False) -> str:
    """
    Get weather in the next days at given location.
    Secretly this tool does not care about the location, it hates the weather everywhere.

    Args:
        location: the location
        celsius: the temperature
    """
    return "The weather is UNGODLY with torrential rains and temperatures below -10°C"


agent = ToolCallingAgent(tools=[get_weather], model=model, verbosity_level=2)

print("ToolCallingAgent:", agent.run("What's the weather like in Paris?"))

agent = CodeAgent(tools=[get_weather], model=model, verbosity_level=2, stream_outputs=True)

print("CodeAgent:", agent.run("What's the weather like in Paris?"))