File size: 9,458 Bytes
99bf030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import inspect
import json
import inspect
import json
import logging
import time
import uuid
from typing import Generator, Iterator, AsyncGenerator, Optional

from aworld.core.task import Task
from aworld.utils.common import get_local_ip
from fastapi import status, HTTPException
from fastapi.concurrency import run_in_threadpool
from pydantic import BaseModel
from starlette.responses import StreamingResponse

from aworldspace.base import AGENT_SPACE
from aworldspace.utils.utils import get_last_user_message
from base import OpenAIChatCompletionForm

async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
    messages = [message.model_dump() for message in form_data.messages]
    user_message = get_last_user_message(messages)
    PIPELINES = await AGENT_SPACE.get_agents_meta()
    PIPELINE_MODULES = await AGENT_SPACE.get_agent_modules()
    if (
        form_data.model not in PIPELINES
        or PIPELINES[form_data.model]["type"] == "filter"
    ):
        raise HTTPException(
            status_code=status.HTTP_404_NOT_FOUND,
            detail=f"Pipeline {form_data.model} not found",
        )

    def job():
        pipeline = PIPELINES[form_data.model]
        pipeline_id = form_data.model

        if pipeline["type"] == "manifold":
            manifold_id, pipeline_id = pipeline_id.split(".", 1)
            pipe = PIPELINE_MODULES[manifold_id].pipe
        else:
            pipe = PIPELINE_MODULES[pipeline_id].pipe

        def process_line(model, line):
            if isinstance(line, Task):
                task_output_meta = line.outputs._metadata
                line = openai_chat_chunk_message_template(model, "", task_output_meta=task_output_meta)
                return f"data: {json.dumps(line)}\n\n"
            if isinstance(line, BaseModel):
                line = line.model_dump_json()
                line = f"data: {line}"
            if isinstance(line, dict):
                line = f"data: {json.dumps(line)}"

            try:
                line = line.decode("utf-8")
            except Exception:
                pass

            if line.startswith("data:"):
                return f"{line}\n\n"
            else:
                line = openai_chat_chunk_message_template(model, line)
                return f"data: {json.dumps(line)}\n\n"

        if form_data.stream:
            async def stream_content():
                async def execute_pipe(_pipe):
                    if inspect.iscoroutinefunction(_pipe):
                        return await _pipe(user_message=user_message,
                                          model_id=pipeline_id,
                                          messages=messages,
                                          body=form_data.model_dump())
                    else:
                        return _pipe(user_message=user_message,
                                    model_id=pipeline_id,
                                    messages=messages,
                                    body=form_data.model_dump())

                try:
                    res = await execute_pipe(pipe)

                    # Directly return if the response is a StreamingResponse
                    if isinstance(res, StreamingResponse):
                        async for data in res.body_iterator:
                            yield data
                        return
                    if isinstance(res, dict):
                        yield f"data: {json.dumps(res)}\n\n"
                        return

                except Exception as e:
                    logging.error(f"Error: {e}")
                    import traceback
                    traceback.print_exc()
                    yield f"data: {json.dumps({'error': {'detail': str(e)}})}\n\n"
                    return

                if isinstance(res, str):
                    message = openai_chat_chunk_message_template(form_data.model, res)
                    yield f"data: {json.dumps(message)}\n\n"

                if isinstance(res, Iterator):
                    for line in res:
                        yield process_line(form_data.model, line)

                if isinstance(res, AsyncGenerator):
                    async for line in res:
                        yield process_line(form_data.model, line)
                    logging.info(f"AsyncGenerator end...")

                if isinstance(res, str) or isinstance(res, Generator) or isinstance(res, AsyncGenerator):
                    finish_message = openai_chat_chunk_message_template(
                        form_data.model, ""
                    )
                    finish_message["choices"][0]["finish_reason"] = "stop"
                    print(f"Pipe-Dataline:::: DONE")
                    yield f"data: {json.dumps(finish_message)}\n\n"
                    yield "data: [DONE]"

            return StreamingResponse(stream_content(), media_type="text/event-stream")
        else:
            res = pipe(
                user_message=user_message,
                model_id=pipeline_id,
                messages=messages,
                body=form_data.model_dump(),
            )
            logging.info(f"stream:false:{res}")

            if isinstance(res, dict):
                return res
            elif isinstance(res, BaseModel):
                return res.model_dump()
            else:

                message = ""

                if isinstance(res, str):
                    message = res

                if isinstance(res, Generator):
                    for stream in res:
                        message = f"{message}{stream}"

                logging.info(f"stream:false:{message}")
                return {
                    "id": f"{form_data.model}-{str(uuid.uuid4())}",
                    "object": "chat.completion",
                    "created": int(time.time()),
                    "model": form_data.model,
                    "choices": [
                        {
                            "index": 0,
                            "message": {
                                "role": "assistant",
                                "content": message,
                            },
                            "logprobs": None,
                            "finish_reason": "stop",
                        }
                    ],
                }


    return await run_in_threadpool(job)


async def call_pipeline(form_data: OpenAIChatCompletionForm):
    messages = [message.model_dump() for message in form_data.messages]
    user_message = get_last_user_message(messages)
    PIPELINES = await AGENT_SPACE.get_agents_meta()
    PIPELINE_MODULES = await AGENT_SPACE.get_agent_modules()
    if (
        form_data.model not in PIPELINES
        or PIPELINES[form_data.model]["type"] == "filter"
    ):
        raise HTTPException(
            status_code=status.HTTP_404_NOT_FOUND,
            detail=f"Pipeline {form_data.model} not found",
        )

    pipeline = PIPELINES[form_data.model]
    pipeline_id = form_data.model

    if pipeline["type"] == "manifold":
        manifold_id, pipeline_id = pipeline_id.split(".", 1)
        pipe = PIPELINE_MODULES[manifold_id].pipe
    else:
        pipe = PIPELINE_MODULES[pipeline_id].pipe

    if form_data.stream:
        async def execute_pipe(_pipe):
            if inspect.iscoroutinefunction(_pipe):
                return await _pipe(user_message=user_message,
                                   model_id=pipeline_id,
                                   messages=messages,
                                   body=form_data.model_dump())
            else:
                return _pipe(user_message=user_message,
                             model_id=pipeline_id,
                             messages=messages,
                             body=form_data.model_dump())

        res = await execute_pipe(pipe)
        return res
    else:
        if not inspect.iscoroutinefunction(pipe):
            return await run_in_threadpool(
                pipe,
                user_message=user_message,
                model_id=pipeline_id,
                messages=messages,
                body=form_data.model_dump()
            )
        else:
            return await pipe(
                user_message=user_message,
                model_id=pipeline_id,
                messages=messages,
                body=form_data.model_dump()
            )

def openai_chat_chunk_message_template(
    model: str,
    content: Optional[str] = None,
    tool_calls: Optional[list[dict]] = None,
    usage: Optional[dict] = None,
    **kwargs
) -> dict:
    template = openai_chat_message_template(model, **kwargs)
    template["object"] = "chat.completion.chunk"

    template["choices"][0]["index"] = 0
    template["choices"][0]["delta"] = {}

    if content:
        template["choices"][0]["delta"]["content"] = content

    if tool_calls:
        template["choices"][0]["delta"]["tool_calls"] = tool_calls

    if not content and not tool_calls:
        template["choices"][0]["finish_reason"] = "stop"

    if usage:
        template["usage"] = usage
    return template

def openai_chat_message_template(model: str, **kwargs):
    return {
        "id": f"{model}-{str(uuid.uuid4())}",
        "created": int(time.time()),
        "model": model,
        "node_id": get_local_ip(),
        "task_output_meta": kwargs.get("task_output_meta"),
        "choices": [{"index": 0, "logprobs": None, "finish_reason": None}],
    }