File size: 34,205 Bytes
59fc0cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Query Pipeline for Advanced Text-to-SQL¶\n",
"\n",
"In this guide we show you how to setup a text-to-SQL pipeline over your data with our query pipeline syntax.\n",
"\n",
"This gives you flexibility to enhance text-to-SQL with additional techniques. We show these in the below sections:\n",
"\n",
"1. Query-Time Table Retrieval: Dynamically retrieve relevant tables in the text-to-SQL prompt.\n",
"2. Query-Time Sample Row retrieval: Embed/Index each row, and dynamically retrieve example rows for each table in the text-to-SQL prompt.\n",
" Our out-of-the box pipelines include our NLSQLTableQueryEngine and SQLTableRetrieverQueryEngine. (if you want to check out our text-to-SQL guide using these modules, take a look here). This guide implements an advanced version of those modules, giving you the utmost flexibility to apply this to your own setting.\n",
"\n",
"NOTE: Any Text-to-SQL application should be aware that executing arbitrary SQL queries can be a security risk. It is recommended to take precautions as needed, such as using restricted roles, read-only databases, sandboxing, etc.\n",
"\n",
"## Load and Ingest Data\n",
"\n",
"### Load Data\n",
"\n",
"We use the [WikiTableQuestions](https://github.com/ppasupat/WikiTableQuestions/releases) dataset (Pasupat and Liang 2015) as our test dataset.\n",
"\n",
"We go through all the csv's in one folder, store each in a sqlite database (we will then build an object index over each table schema).\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"processing file: WikiTableQuestions/csv/200-csv/0.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/1.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/10.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/11.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/12.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/14.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/15.csv\n",
"Error parsing WikiTableQuestions/csv/200-csv/15.csv: Error tokenizing data. C error: Expected 4 fields in line 16, saw 5\n",
"\n",
"processing file: WikiTableQuestions/csv/200-csv/17.csv\n",
"Error parsing WikiTableQuestions/csv/200-csv/17.csv: Error tokenizing data. C error: Expected 6 fields in line 5, saw 7\n",
"\n",
"processing file: WikiTableQuestions/csv/200-csv/18.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/20.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/22.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/24.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/25.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/26.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/28.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/29.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/3.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/30.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/31.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/32.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/33.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/34.csv\n",
"Error parsing WikiTableQuestions/csv/200-csv/34.csv: Error tokenizing data. C error: Expected 4 fields in line 6, saw 13\n",
"\n",
"processing file: WikiTableQuestions/csv/200-csv/35.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/36.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/37.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/38.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/4.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/41.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/42.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/44.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/45.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/46.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/47.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/48.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/7.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/8.csv\n",
"processing file: WikiTableQuestions/csv/200-csv/9.csv\n"
]
}
],
"source": [
"import pandas as pd\n",
"from pathlib import Path\n",
"\n",
"data_dir = Path(\"./WikiTableQuestions/csv/200-csv\")\n",
"csv_files = sorted([f for f in data_dir.glob(\"*.csv\")])\n",
"dfs = []\n",
"for csv_file in csv_files:\n",
" print(f\"processing file: {csv_file}\")\n",
" try:\n",
" df = pd.read_csv(csv_file)\n",
" dfs.append(df)\n",
" except Exception as e:\n",
" print(f\"Error parsing {csv_file}: {str(e)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Extract Table Name and Summary from each Table\n",
"\n",
"Here we use gpt-3.5 to extract a table name (with underscores) and summary from each table with our Pydantic program.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.core.program import LLMTextCompletionProgram\n",
"from llama_index.core.bridge.pydantic import BaseModel, Field\n",
"from llama_index.llms.openai import OpenAI\n",
"\n",
"\n",
"class TableInfo(BaseModel):\n",
" \"\"\"Information regarding a structured table.\"\"\"\n",
"\n",
" table_name: str = Field(\n",
" ..., description=\"table name (must be underscores and NO spaces)\"\n",
" )\n",
" table_summary: str = Field(\n",
" ..., description=\"short, concise summary/caption of the table\"\n",
" )\n",
"\n",
"\n",
"prompt_str = \"\"\"\\\n",
"Give me a summary of the table with the following JSON format.\n",
"\n",
"- The table name must be unique to the table and describe it while being concise. \n",
"- Do NOT output a generic table name (e.g. table, my_table).\n",
"\n",
"Do NOT make the table name one of the following: {exclude_table_name_list}\n",
"\n",
"Table:\n",
"{table_str}\n",
"\n",
"Summary: \"\"\"\n",
"\n",
"program = LLMTextCompletionProgram.from_defaults(\n",
" output_cls=TableInfo,\n",
" llm=OpenAI(model=\"gpt-3.5-turbo\"),\n",
" prompt_template_str=prompt_str,\n",
")\n",
"\n",
"print(program)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"\n",
"def _get_tableinfo_with_index(idx: int):\n",
" results_gen = Path(\"WikiTableQuestions_TableInfo\").glob(f\"{idx}_*\")\n",
" results_list = list(results_gen)\n",
" if len(results_list) == 0:\n",
" return None\n",
" if len(results_list) == 1:\n",
" path = results_list[0]\n",
" return TableInfo.parse_file(path)\n",
" else:\n",
" raise ValueError(\n",
" f\"More than one file matching index: {list(results_gen)}\"\n",
" )\n",
"\n",
"\n",
"table_names = set()\n",
"table_infos = []\n",
"for idx, df in enumerate(dfs):\n",
" table_info = _get_tableinfo_with_index(idx)\n",
" if table_info:\n",
" table_infos.append(table_info)\n",
" else:\n",
" while True:\n",
" df_str = df.head(10).to_csv()\n",
" table_info = program(\n",
" table_str=df_str,\n",
" exclude_table_name_list=str(list(table_names)),\n",
" )\n",
" table_name = table_info.table_name\n",
" print(f\"Processed table: {table_name}\")\n",
" if table_name not in table_names:\n",
" table_names.add(table_name)\n",
" break\n",
" else:\n",
" # try again\n",
" print(f\"Table name {table_name} already exists, trying again.\")\n",
" pass\n",
"\n",
" out_file = f\"WikiTableQuestions_TableInfo/{idx}_{table_name}.json\"\n",
" json.dump(table_info.dict(), open(out_file, \"w\"))\n",
" table_infos.append(table_info)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Put Data in SQL Database\n",
"\n",
"We use sqlalchemy, a popular SQL database toolkit, to load all the tables.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# put data into sqlite db\n",
"from sqlalchemy import (\n",
" create_engine,\n",
" MetaData,\n",
" Table,\n",
" Column,\n",
" String,\n",
" Integer,\n",
")\n",
"import re\n",
"\n",
"\n",
"# Function to create a sanitized column name\n",
"def sanitize_column_name(col_name):\n",
" # Remove special characters and replace spaces with underscores\n",
" return re.sub(r\"\\W+\", \"_\", col_name)\n",
"\n",
"\n",
"# Function to create a table from a DataFrame using SQLAlchemy\n",
"def create_table_from_dataframe(\n",
" df: pd.DataFrame, table_name: str, engine, metadata_obj\n",
"):\n",
" # Sanitize column names\n",
" sanitized_columns = {col: sanitize_column_name(col) for col in df.columns}\n",
" df = df.rename(columns=sanitized_columns)\n",
"\n",
" # Dynamically create columns based on DataFrame columns and data types\n",
" columns = [\n",
" Column(col, String if dtype == \"object\" else Integer)\n",
" for col, dtype in zip(df.columns, df.dtypes)\n",
" ]\n",
"\n",
" # Create a table with the defined columns\n",
" table = Table(table_name, metadata_obj, *columns)\n",
"\n",
" # Create the table in the database\n",
" metadata_obj.create_all(engine)\n",
"\n",
" # Insert data from DataFrame into the table\n",
" with engine.connect() as conn:\n",
" for _, row in df.iterrows():\n",
" insert_stmt = table.insert().values(**row.to_dict())\n",
" conn.execute(insert_stmt)\n",
" conn.commit()\n",
"\n",
"\n",
"engine = create_engine(\"sqlite:///:memory:\")\n",
"metadata_obj = MetaData()\n",
"for idx, df in enumerate(dfs):\n",
" tableinfo = _get_tableinfo_with_index(idx)\n",
" print(f\"Creating table: {tableinfo.table_name}\")\n",
" create_table_from_dataframe(df, tableinfo.table_name, engine, metadata_obj)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Setup Arize Phoenix for observability\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from openinference.instrumentation.llama_index import LlamaIndexInstrumentor\n",
"from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter\n",
"from opentelemetry.sdk import trace as trace_sdk\n",
"from opentelemetry.sdk.trace.export import SimpleSpanProcessor\n",
"\n",
"endpoint = \"http://127.0.0.1:6006/v1/traces\" # Phoenix receiver address\n",
"\n",
"tracer_provider = trace_sdk.TracerProvider()\n",
"tracer_provider.add_span_processor(\n",
" SimpleSpanProcessor(OTLPSpanExporter(endpoint)))\n",
"\n",
"LlamaIndexInstrumentor().instrument(tracer_provider=tracer_provider)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Advanced Capability 1: Text-to-SQL with Query-Time Table Retrieval.\n",
"\n",
"We now show you how to setup an e2e text-to-SQL with table retrieval.\n",
"\n",
"Here we define the core modules.\n",
"\n",
"1. Object index + retriever to store table schemas\n",
"2. SQLDatabase object to connect to the above tables + SQLRetriever.\n",
"3. Text-to-SQL Prompt\n",
"4. Response synthesis Prompt\n",
"5. LLM\n",
"\n",
"### 1. Object index, retriever, SQLDatabase\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.core.objects import (\n",
" SQLTableNodeMapping,\n",
" ObjectIndex,\n",
" SQLTableSchema,\n",
")\n",
"from llama_index.core import SQLDatabase, VectorStoreIndex\n",
"\n",
"sql_database = SQLDatabase(engine)\n",
"\n",
"table_node_mapping = SQLTableNodeMapping(sql_database)\n",
"\n",
"table_schema_objs = [\n",
" SQLTableSchema(table_name=t.table_name, context_str=t.table_summary)\n",
" for t in table_infos\n",
"] # add a SQLTableSchema for each table\n",
"\n",
"obj_index = ObjectIndex.from_objects(objects=table_schema_objs,\n",
" object_mapping=table_node_mapping,\n",
" index_cls=VectorStoreIndex,\n",
" )\n",
"obj_retriever = obj_index.as_retriever(similarity_top_k=3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. SQLRetriever + Table Parser\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.core.retrievers import SQLRetriever\n",
"from typing import List\n",
"from llama_index.core.query_pipeline import FnComponent\n",
"\n",
"sql_retriever = SQLRetriever(sql_database)\n",
"\n",
"\n",
"def get_table_context_str(table_schema_objs: List[SQLTableSchema]):\n",
" \"\"\"Get table context string.\"\"\"\n",
" context_strs = []\n",
" for table_schema_obj in table_schema_objs:\n",
" table_info = sql_database.get_single_table_info(\n",
" table_schema_obj.table_name\n",
" )\n",
" if table_schema_obj.context_str:\n",
" table_opt_context = \" The table description is: \"\n",
" table_opt_context += table_schema_obj.context_str\n",
" table_info += table_opt_context\n",
"\n",
" context_strs.append(table_info)\n",
" return \"\\n\\n\".join(context_strs)\n",
"\n",
"\n",
"table_parser_component = FnComponent(fn=get_table_context_str)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. Text-to-SQL Prompt + Output Parser\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.core.prompts.default_prompts import DEFAULT_TEXT_TO_SQL_PROMPT\n",
"from llama_index.core import PromptTemplate\n",
"from llama_index.core.query_pipeline import FnComponent\n",
"from llama_index.core.llms import ChatResponse\n",
"\n",
"\n",
"def extract_sql_query(content: str) -> str:\n",
" sql_query_start = content.find(\"SQLQuery:\")\n",
" if sql_query_start == -1:\n",
" raise ValueError(\"No 'SQLQuery:' marker found in the response content\")\n",
"\n",
" query_content = content[sql_query_start + len(\"SQLQuery:\"):]\n",
" sql_result_start = query_content.find(\"SQLResult:\")\n",
"\n",
" if sql_result_start != -1:\n",
" query_content = query_content[:sql_result_start]\n",
"\n",
" return query_content\n",
"\n",
"\n",
"def clean_sql_query(query: str) -> str:\n",
" return query.strip().strip(\"```\").strip()\n",
"\n",
"\n",
"def parse_response_to_sql(response: ChatResponse) -> str:\n",
" \"\"\"\n",
" Parse a ChatResponse object to extract the SQL query.\n",
"\n",
" This function takes a ChatResponse object, which is expected to contain\n",
" an SQL query within its content, and extracts the SQL query string.\n",
" The function looks for specific markers ('SQLQuery:' and 'SQLResult:')\n",
" to identify the SQL query portion of the response.\n",
"\n",
" Args:\n",
" response (ChatResponse): A ChatResponse object containing the response\n",
" from a text-to-SQL model.\n",
"\n",
" Returns:\n",
" str: The extracted SQL query as a string, with surrounding whitespace\n",
" and code block markers (```) removed.\n",
"\n",
" Raises:\n",
" AttributeError: If the input doesn't have the expected 'message.content' attribute.\n",
" ValueError: If no 'SQLQuery:' marker is found in the response content.\n",
"\n",
" Note:\n",
" - The function assumes that the SQL query is preceded by 'SQLQuery:' \n",
" and optionally followed by 'SQLResult:'.\n",
" - Any content before 'SQLQuery:' or after 'SQLResult:' is discarded.\n",
" - The function removes leading/trailing whitespace and code block markers.\n",
"\n",
" Example:\n",
" >>> response = ChatResponse(message=Message(content=\"Some text\\nSQLQuery: SELECT * FROM table\\nSQLResult: ...\"))\n",
" >>> sql_query = parse_response_to_sql(response)\n",
" >>> print(sql_query)\n",
" SELECT * FROM table\n",
" \"\"\"\n",
" try:\n",
" content = str(response.message.content)\n",
" except AttributeError:\n",
" raise ValueError(\n",
" \"Input must be a ChatResponse object with a 'message.content' attribute\")\n",
"\n",
" sql_query = extract_sql_query(content)\n",
" return clean_sql_query(sql_query)\n",
"\n",
"\n",
"sql_parser_component = FnComponent(fn=parse_response_to_sql)\n",
"\n",
"text2sql_prompt = DEFAULT_TEXT_TO_SQL_PROMPT.partial_format(\n",
" dialect=engine.dialect.name\n",
")\n",
"print(text2sql_prompt.template)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. Response Synthesis Prompt\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response_synthesis_prompt_str = (\n",
" \"Given an input question, synthesize a response from the query results.\\n\"\n",
" \"Query: {query_str}\\n\"\n",
" \"SQL: {sql_query}\\n\"\n",
" \"SQL Response: {context_str}\\n\"\n",
" \"Response: \"\n",
")\n",
"response_synthesis_prompt = PromptTemplate(\n",
" response_synthesis_prompt_str,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5. LLM\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(model=\"gpt-3.5-turbo\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Define Query Pipeline\n",
"\n",
"Now that the components are in place, let's define the query pipeline!\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.core.query_pipeline import (\n",
" QueryPipeline as QP,\n",
" Link,\n",
" InputComponent,\n",
" CustomQueryComponent,\n",
")\n",
"\n",
"qp = QP(\n",
" modules={\n",
" \"input\": InputComponent(),\n",
" \"table_retriever\": obj_retriever,\n",
" \"table_output_parser\": table_parser_component,\n",
" \"text2sql_prompt\": text2sql_prompt,\n",
" \"text2sql_llm\": llm,\n",
" \"sql_output_parser\": sql_parser_component,\n",
" \"sql_retriever\": sql_retriever,\n",
" \"response_synthesis_prompt\": response_synthesis_prompt,\n",
" \"response_synthesis_llm\": llm,\n",
" },\n",
" verbose=True,\n",
")\n",
"qp"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"qp.add_chain([\"input\", \"table_retriever\", \"table_output_parser\"])\n",
"qp.add_link(\"input\", \"text2sql_prompt\", dest_key=\"query_str\")\n",
"qp.add_link(\"table_output_parser\", \"text2sql_prompt\", dest_key=\"schema\")\n",
"qp.add_chain(\n",
" [\"text2sql_prompt\", \"text2sql_llm\", \"sql_output_parser\", \"sql_retriever\"]\n",
")\n",
"qp.add_link(\n",
" \"sql_output_parser\", \"response_synthesis_prompt\", dest_key=\"sql_query\"\n",
")\n",
"qp.add_link(\n",
" \"sql_retriever\", \"response_synthesis_prompt\", dest_key=\"context_str\"\n",
")\n",
"qp.add_link(\"input\", \"response_synthesis_prompt\", dest_key=\"query_str\")\n",
"qp.add_link(\"response_synthesis_prompt\", \"response_synthesis_llm\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Visualize Query Pipeline\n",
"\n",
"A really nice property of the query pipeline syntax is you can easily visualize it in a graph via networkx.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pyvis.network import Network\n",
"\n",
"net = Network(notebook=True, cdn_resources=\"in_line\", directed=True)\n",
"net.from_nx(qp.dag)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Save the network as \"text2sql_dag.html\"\n",
"net.write_html(\"text2sql_dag.html\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import display, HTML\n",
"\n",
"# Read the contents of the HTML file\n",
"with open(\"text2sql_dag.html\", \"r\") as file:\n",
" html_content = file.read()\n",
"\n",
"# Display the HTML content\n",
"display(HTML(html_content))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run Some Queries!\n",
"\n",
"Now we're ready to run some queries across this entire pipeline.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response = qp.run(\n",
" query=\"What was the year that The Notorious B.I.G was signed to Bad Boy?\"\n",
")\n",
"print(str(response))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response = qp.run(query=\"Who won best director in the 1972 academy awards\")\n",
"print(str(response))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Advanced Capability 2: Text-to-SQL with Query-Time Row Retrieval (along with Table Retrieval)\n",
"\n",
"One problem in the previous example is that if the user asks a query that asks for \"The Notorious BIG\" but the artist is stored as \"The Notorious B.I.G\", then the generated SELECT statement will likely not return any matches.\n",
"\n",
"We can alleviate this problem by fetching a small number of example rows per table. A naive option would be to just take the first k rows. Instead, we embed, index, and retrieve k relevant rows given the user query to give the text-to-SQL LLM the most contextually relevant information for SQL generation.\n",
"\n",
"We now extend our query pipeline.\n",
"\n",
"## Index Each Table\n",
"\n",
"We embed/index the rows of each table, resulting in one index per table.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"from pathlib import Path\n",
"from typing import Dict, Optional\n",
"from llama_index.core import VectorStoreIndex, load_index_from_storage\n",
"from llama_index.core.schema import TextNode\n",
"from llama_index.core import StorageContext\n",
"from sqlalchemy.exc import SQLAlchemyError\n",
"from sqlalchemy import text\n",
"\n",
"logger = logging.getLogger(__name__)\n",
"\n",
"\n",
"def get_table_rows(engine, table_name: str):\n",
" try:\n",
" with engine.connect() as conn:\n",
" cursor = conn.execute(text(f'SELECT * FROM \"{table_name}\"'))\n",
" return [tuple(row) for row in cursor.fetchall()]\n",
" except SQLAlchemyError as e:\n",
" logger.error(f\"Error fetching rows from table {table_name}: {str(e)}\")\n",
" raise\n",
"\n",
"\n",
"def create_index(rows, index_path: Path):\n",
" nodes = [TextNode(text=str(t)) for t in rows]\n",
" index = VectorStoreIndex(nodes)\n",
" index.set_index_id(\"vector_index\")\n",
" index.storage_context.persist(str(index_path))\n",
" return index\n",
"\n",
"\n",
"def load_existing_index(index_path: Path):\n",
" storage_context = StorageContext.from_defaults(persist_dir=str(index_path))\n",
" return load_index_from_storage(storage_context, index_id=\"vector_index\")\n",
"\n",
"\n",
"def index_all_tables(\n",
" sql_database,\n",
" table_index_dir: str = \"table_index_dir\",\n",
" force_refresh: bool = False,\n",
" tables_to_index: Optional[list] = None\n",
") -> Dict[str, VectorStoreIndex]:\n",
" \"\"\"\n",
" Create or load vector store indexes for specified tables in the given SQL database.\n",
"\n",
" Args:\n",
" sql_database: An instance of SQLDatabase containing the tables to be indexed.\n",
" table_index_dir (str): The directory where the indexes will be stored.\n",
" force_refresh (bool): If True, recreate all indexes even if they already exist.\n",
" tables_to_index (Optional[list]): List of table names to index. If None, index all usable tables.\n",
"\n",
" Returns:\n",
" Dict[str, VectorStoreIndex]: A dictionary of table names to their VectorStoreIndex objects.\n",
"\n",
" Raises:\n",
" OSError: If there's an error creating or accessing the table_index_dir.\n",
" SQLAlchemyError: If there's an error connecting to the database or executing SQL queries.\n",
" \"\"\"\n",
" index_dir = Path(table_index_dir)\n",
" index_dir.mkdir(parents=True, exist_ok=True)\n",
"\n",
" vector_index_dict = {}\n",
" tables = tables_to_index or sql_database.get_usable_table_names()\n",
"\n",
" for table_name in tables:\n",
" index_path = index_dir / table_name\n",
" logger.info(f\"Processing table: {table_name}\")\n",
"\n",
" try:\n",
" if not index_path.exists() or force_refresh:\n",
" logger.info(f\"Creating new index for table: {table_name}\")\n",
" rows = get_table_rows(sql_database.engine, table_name)\n",
" index = create_index(rows, index_path)\n",
" else:\n",
" logger.info(f\"Loading existing index for table: {table_name}\")\n",
" index = load_existing_index(index_path)\n",
"\n",
" vector_index_dict[table_name] = index\n",
"\n",
" except (OSError, SQLAlchemyError) as e:\n",
" logger.error(f\"Error processing table {table_name}: {str(e)}\")\n",
" # Decide whether to continue with other tables or raise the exception\n",
"\n",
" return vector_index_dict\n",
"\n",
"\n",
"vector_index_dict = index_all_tables(sql_database)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_retriever = vector_index_dict[\"Bad_Boy_Artists\"].as_retriever(\n",
" similarity_top_k=1\n",
")\n",
"nodes = test_retriever.retrieve(\"P. Diddy\")\n",
"print(nodes[0].get_content())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Define Expanded Table Parser Component\n",
"\n",
"We expand the capability of our table_parser_component to not only return the relevant table schemas, but also return relevant rows per table schema.\n",
"\n",
"It now takes in both table_schema_objs (output of table retriever), but also the original query_str which will then be used for vector retrieval of relevant rows.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.core.retrievers import SQLRetriever\n",
"from typing import List\n",
"from llama_index.core.query_pipeline import FnComponent\n",
"\n",
"sql_retriever = SQLRetriever(sql_database)\n",
"\n",
"\n",
"def get_table_context_and_rows_str(\n",
" query_str: str, table_schema_objs: List[SQLTableSchema]\n",
"):\n",
" \"\"\"Get table context string.\"\"\"\n",
" context_strs = []\n",
" for table_schema_obj in table_schema_objs:\n",
" # first append table info + additional context\n",
" table_info = sql_database.get_single_table_info(\n",
" table_schema_obj.table_name\n",
" )\n",
" if table_schema_obj.context_str:\n",
" table_opt_context = \" The table description is: \"\n",
" table_opt_context += table_schema_obj.context_str\n",
" table_info += table_opt_context\n",
"\n",
" # also lookup vector index to return relevant table rows\n",
" vector_retriever = vector_index_dict[\n",
" table_schema_obj.table_name\n",
" ].as_retriever(similarity_top_k=2)\n",
" relevant_nodes = vector_retriever.retrieve(query_str)\n",
" if len(relevant_nodes) > 0:\n",
" table_row_context = \"\\nHere are some relevant example rows (values in the same order as columns above)\\n\"\n",
" for node in relevant_nodes:\n",
" table_row_context += str(node.get_content()) + \"\\n\"\n",
" table_info += table_row_context\n",
"\n",
" context_strs.append(table_info)\n",
" return \"\\n\\n\".join(context_strs)\n",
"\n",
"\n",
"table_parser_component = FnComponent(fn=get_table_context_and_rows_str)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Define Expanded Query Pipeline\n",
"\n",
"This looks similar to the query pipeline in section 1, but with an upgraded table_parser_component.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.core.query_pipeline import (\n",
" QueryPipeline as QP,\n",
" Link,\n",
" InputComponent,\n",
" CustomQueryComponent,\n",
")\n",
"\n",
"qp = QP(\n",
" modules={\n",
" \"input\": InputComponent(),\n",
" \"table_retriever\": obj_retriever,\n",
" \"table_output_parser\": table_parser_component,\n",
" \"text2sql_prompt\": text2sql_prompt,\n",
" \"text2sql_llm\": llm,\n",
" \"sql_output_parser\": sql_parser_component,\n",
" \"sql_retriever\": sql_retriever,\n",
" \"response_synthesis_prompt\": response_synthesis_prompt,\n",
" \"response_synthesis_llm\": llm,\n",
" },\n",
" verbose=True,\n",
")\n",
"qp"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"qp.add_link(\"input\", \"table_retriever\")\n",
"qp.add_link(\"input\", \"table_output_parser\", dest_key=\"query_str\")\n",
"qp.add_link(\n",
" \"table_retriever\", \"table_output_parser\", dest_key=\"table_schema_objs\"\n",
")\n",
"qp.add_link(\"input\", \"text2sql_prompt\", dest_key=\"query_str\")\n",
"qp.add_link(\"table_output_parser\", \"text2sql_prompt\", dest_key=\"schema\")\n",
"qp.add_chain(\n",
" [\"text2sql_prompt\", \"text2sql_llm\", \"sql_output_parser\", \"sql_retriever\"]\n",
")\n",
"qp.add_link(\n",
" \"sql_output_parser\", \"response_synthesis_prompt\", dest_key=\"sql_query\"\n",
")\n",
"qp.add_link(\n",
" \"sql_retriever\", \"response_synthesis_prompt\", dest_key=\"context_str\"\n",
")\n",
"qp.add_link(\"input\", \"response_synthesis_prompt\", dest_key=\"query_str\")\n",
"qp.add_link(\"response_synthesis_prompt\", \"response_synthesis_llm\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run Some Queries\n",
"\n",
"We can now ask about relevant entries even if it doesn't exactly match the entry in the database.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response = qp.run(\n",
" query=\"What was the year that The Notorious BIG was signed to Bad Boy?\"\n",
")\n",
"print(str(response))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "llama",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|