feat: init advanced_text_to_SQL.ipynb
Browse files
multi-agents-analysis/advanced_text_to_SQL.ipynb
ADDED
@@ -0,0 +1,943 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Query Pipeline for Advanced Text-to-SQL¶\n",
|
8 |
+
"\n",
|
9 |
+
"In this guide we show you how to setup a text-to-SQL pipeline over your data with our query pipeline syntax.\n",
|
10 |
+
"\n",
|
11 |
+
"This gives you flexibility to enhance text-to-SQL with additional techniques. We show these in the below sections:\n",
|
12 |
+
"\n",
|
13 |
+
"1. Query-Time Table Retrieval: Dynamically retrieve relevant tables in the text-to-SQL prompt.\n",
|
14 |
+
"2. Query-Time Sample Row retrieval: Embed/Index each row, and dynamically retrieve example rows for each table in the text-to-SQL prompt.\n",
|
15 |
+
" Our out-of-the box pipelines include our NLSQLTableQueryEngine and SQLTableRetrieverQueryEngine. (if you want to check out our text-to-SQL guide using these modules, take a look here). This guide implements an advanced version of those modules, giving you the utmost flexibility to apply this to your own setting.\n",
|
16 |
+
"\n",
|
17 |
+
"NOTE: Any Text-to-SQL application should be aware that executing arbitrary SQL queries can be a security risk. It is recommended to take precautions as needed, such as using restricted roles, read-only databases, sandboxing, etc.\n",
|
18 |
+
"\n",
|
19 |
+
"## Load and Ingest Data\n",
|
20 |
+
"\n",
|
21 |
+
"### Load Data\n",
|
22 |
+
"\n",
|
23 |
+
"We use the [WikiTableQuestions](https://github.com/ppasupat/WikiTableQuestions/releases) dataset (Pasupat and Liang 2015) as our test dataset.\n",
|
24 |
+
"\n",
|
25 |
+
"We go through all the csv's in one folder, store each in a sqlite database (we will then build an object index over each table schema).\n"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 9,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [
|
33 |
+
{
|
34 |
+
"name": "stdout",
|
35 |
+
"output_type": "stream",
|
36 |
+
"text": [
|
37 |
+
"processing file: WikiTableQuestions/csv/200-csv/0.csv\n",
|
38 |
+
"processing file: WikiTableQuestions/csv/200-csv/1.csv\n",
|
39 |
+
"processing file: WikiTableQuestions/csv/200-csv/10.csv\n",
|
40 |
+
"processing file: WikiTableQuestions/csv/200-csv/11.csv\n",
|
41 |
+
"processing file: WikiTableQuestions/csv/200-csv/12.csv\n",
|
42 |
+
"processing file: WikiTableQuestions/csv/200-csv/14.csv\n",
|
43 |
+
"processing file: WikiTableQuestions/csv/200-csv/15.csv\n",
|
44 |
+
"Error parsing WikiTableQuestions/csv/200-csv/15.csv: Error tokenizing data. C error: Expected 4 fields in line 16, saw 5\n",
|
45 |
+
"\n",
|
46 |
+
"processing file: WikiTableQuestions/csv/200-csv/17.csv\n",
|
47 |
+
"Error parsing WikiTableQuestions/csv/200-csv/17.csv: Error tokenizing data. C error: Expected 6 fields in line 5, saw 7\n",
|
48 |
+
"\n",
|
49 |
+
"processing file: WikiTableQuestions/csv/200-csv/18.csv\n",
|
50 |
+
"processing file: WikiTableQuestions/csv/200-csv/20.csv\n",
|
51 |
+
"processing file: WikiTableQuestions/csv/200-csv/22.csv\n",
|
52 |
+
"processing file: WikiTableQuestions/csv/200-csv/24.csv\n",
|
53 |
+
"processing file: WikiTableQuestions/csv/200-csv/25.csv\n",
|
54 |
+
"processing file: WikiTableQuestions/csv/200-csv/26.csv\n",
|
55 |
+
"processing file: WikiTableQuestions/csv/200-csv/28.csv\n",
|
56 |
+
"processing file: WikiTableQuestions/csv/200-csv/29.csv\n",
|
57 |
+
"processing file: WikiTableQuestions/csv/200-csv/3.csv\n",
|
58 |
+
"processing file: WikiTableQuestions/csv/200-csv/30.csv\n",
|
59 |
+
"processing file: WikiTableQuestions/csv/200-csv/31.csv\n",
|
60 |
+
"processing file: WikiTableQuestions/csv/200-csv/32.csv\n",
|
61 |
+
"processing file: WikiTableQuestions/csv/200-csv/33.csv\n",
|
62 |
+
"processing file: WikiTableQuestions/csv/200-csv/34.csv\n",
|
63 |
+
"Error parsing WikiTableQuestions/csv/200-csv/34.csv: Error tokenizing data. C error: Expected 4 fields in line 6, saw 13\n",
|
64 |
+
"\n",
|
65 |
+
"processing file: WikiTableQuestions/csv/200-csv/35.csv\n",
|
66 |
+
"processing file: WikiTableQuestions/csv/200-csv/36.csv\n",
|
67 |
+
"processing file: WikiTableQuestions/csv/200-csv/37.csv\n",
|
68 |
+
"processing file: WikiTableQuestions/csv/200-csv/38.csv\n",
|
69 |
+
"processing file: WikiTableQuestions/csv/200-csv/4.csv\n",
|
70 |
+
"processing file: WikiTableQuestions/csv/200-csv/41.csv\n",
|
71 |
+
"processing file: WikiTableQuestions/csv/200-csv/42.csv\n",
|
72 |
+
"processing file: WikiTableQuestions/csv/200-csv/44.csv\n",
|
73 |
+
"processing file: WikiTableQuestions/csv/200-csv/45.csv\n",
|
74 |
+
"processing file: WikiTableQuestions/csv/200-csv/46.csv\n",
|
75 |
+
"processing file: WikiTableQuestions/csv/200-csv/47.csv\n",
|
76 |
+
"processing file: WikiTableQuestions/csv/200-csv/48.csv\n",
|
77 |
+
"processing file: WikiTableQuestions/csv/200-csv/7.csv\n",
|
78 |
+
"processing file: WikiTableQuestions/csv/200-csv/8.csv\n",
|
79 |
+
"processing file: WikiTableQuestions/csv/200-csv/9.csv\n"
|
80 |
+
]
|
81 |
+
}
|
82 |
+
],
|
83 |
+
"source": [
|
84 |
+
"import pandas as pd\n",
|
85 |
+
"from pathlib import Path\n",
|
86 |
+
"\n",
|
87 |
+
"data_dir = Path(\"./WikiTableQuestions/csv/200-csv\")\n",
|
88 |
+
"csv_files = sorted([f for f in data_dir.glob(\"*.csv\")])\n",
|
89 |
+
"dfs = []\n",
|
90 |
+
"for csv_file in csv_files:\n",
|
91 |
+
" print(f\"processing file: {csv_file}\")\n",
|
92 |
+
" try:\n",
|
93 |
+
" df = pd.read_csv(csv_file)\n",
|
94 |
+
" dfs.append(df)\n",
|
95 |
+
" except Exception as e:\n",
|
96 |
+
" print(f\"Error parsing {csv_file}: {str(e)}\")"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "markdown",
|
101 |
+
"metadata": {},
|
102 |
+
"source": [
|
103 |
+
"### Extract Table Name and Summary from each Table\n",
|
104 |
+
"\n",
|
105 |
+
"Here we use gpt-3.5 to extract a table name (with underscores) and summary from each table with our Pydantic program.\n"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "code",
|
110 |
+
"execution_count": null,
|
111 |
+
"metadata": {},
|
112 |
+
"outputs": [],
|
113 |
+
"source": [
|
114 |
+
"from llama_index.core.program import LLMTextCompletionProgram\n",
|
115 |
+
"from llama_index.core.bridge.pydantic import BaseModel, Field\n",
|
116 |
+
"from llama_index.llms.openai import OpenAI\n",
|
117 |
+
"\n",
|
118 |
+
"\n",
|
119 |
+
"class TableInfo(BaseModel):\n",
|
120 |
+
" \"\"\"Information regarding a structured table.\"\"\"\n",
|
121 |
+
"\n",
|
122 |
+
" table_name: str = Field(\n",
|
123 |
+
" ..., description=\"table name (must be underscores and NO spaces)\"\n",
|
124 |
+
" )\n",
|
125 |
+
" table_summary: str = Field(\n",
|
126 |
+
" ..., description=\"short, concise summary/caption of the table\"\n",
|
127 |
+
" )\n",
|
128 |
+
"\n",
|
129 |
+
"\n",
|
130 |
+
"prompt_str = \"\"\"\\\n",
|
131 |
+
"Give me a summary of the table with the following JSON format.\n",
|
132 |
+
"\n",
|
133 |
+
"- The table name must be unique to the table and describe it while being concise. \n",
|
134 |
+
"- Do NOT output a generic table name (e.g. table, my_table).\n",
|
135 |
+
"\n",
|
136 |
+
"Do NOT make the table name one of the following: {exclude_table_name_list}\n",
|
137 |
+
"\n",
|
138 |
+
"Table:\n",
|
139 |
+
"{table_str}\n",
|
140 |
+
"\n",
|
141 |
+
"Summary: \"\"\"\n",
|
142 |
+
"\n",
|
143 |
+
"program = LLMTextCompletionProgram.from_defaults(\n",
|
144 |
+
" output_cls=TableInfo,\n",
|
145 |
+
" llm=OpenAI(model=\"gpt-3.5-turbo\"),\n",
|
146 |
+
" prompt_template_str=prompt_str,\n",
|
147 |
+
")\n",
|
148 |
+
"\n",
|
149 |
+
"print(program)"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": null,
|
155 |
+
"metadata": {},
|
156 |
+
"outputs": [],
|
157 |
+
"source": [
|
158 |
+
"import json\n",
|
159 |
+
"\n",
|
160 |
+
"\n",
|
161 |
+
"def _get_tableinfo_with_index(idx: int):\n",
|
162 |
+
" results_gen = Path(\"WikiTableQuestions_TableInfo\").glob(f\"{idx}_*\")\n",
|
163 |
+
" results_list = list(results_gen)\n",
|
164 |
+
" if len(results_list) == 0:\n",
|
165 |
+
" return None\n",
|
166 |
+
" if len(results_list) == 1:\n",
|
167 |
+
" path = results_list[0]\n",
|
168 |
+
" return TableInfo.parse_file(path)\n",
|
169 |
+
" else:\n",
|
170 |
+
" raise ValueError(\n",
|
171 |
+
" f\"More than one file matching index: {list(results_gen)}\"\n",
|
172 |
+
" )\n",
|
173 |
+
"\n",
|
174 |
+
"\n",
|
175 |
+
"table_names = set()\n",
|
176 |
+
"table_infos = []\n",
|
177 |
+
"for idx, df in enumerate(dfs):\n",
|
178 |
+
" table_info = _get_tableinfo_with_index(idx)\n",
|
179 |
+
" if table_info:\n",
|
180 |
+
" table_infos.append(table_info)\n",
|
181 |
+
" else:\n",
|
182 |
+
" while True:\n",
|
183 |
+
" df_str = df.head(10).to_csv()\n",
|
184 |
+
" table_info = program(\n",
|
185 |
+
" table_str=df_str,\n",
|
186 |
+
" exclude_table_name_list=str(list(table_names)),\n",
|
187 |
+
" )\n",
|
188 |
+
" table_name = table_info.table_name\n",
|
189 |
+
" print(f\"Processed table: {table_name}\")\n",
|
190 |
+
" if table_name not in table_names:\n",
|
191 |
+
" table_names.add(table_name)\n",
|
192 |
+
" break\n",
|
193 |
+
" else:\n",
|
194 |
+
" # try again\n",
|
195 |
+
" print(f\"Table name {table_name} already exists, trying again.\")\n",
|
196 |
+
" pass\n",
|
197 |
+
"\n",
|
198 |
+
" out_file = f\"WikiTableQuestions_TableInfo/{idx}_{table_name}.json\"\n",
|
199 |
+
" json.dump(table_info.dict(), open(out_file, \"w\"))\n",
|
200 |
+
" table_infos.append(table_info)"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "markdown",
|
205 |
+
"metadata": {},
|
206 |
+
"source": [
|
207 |
+
"### Put Data in SQL Database\n",
|
208 |
+
"\n",
|
209 |
+
"We use sqlalchemy, a popular SQL database toolkit, to load all the tables.\n"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"cell_type": "code",
|
214 |
+
"execution_count": null,
|
215 |
+
"metadata": {},
|
216 |
+
"outputs": [],
|
217 |
+
"source": [
|
218 |
+
"# put data into sqlite db\n",
|
219 |
+
"from sqlalchemy import (\n",
|
220 |
+
" create_engine,\n",
|
221 |
+
" MetaData,\n",
|
222 |
+
" Table,\n",
|
223 |
+
" Column,\n",
|
224 |
+
" String,\n",
|
225 |
+
" Integer,\n",
|
226 |
+
")\n",
|
227 |
+
"import re\n",
|
228 |
+
"\n",
|
229 |
+
"\n",
|
230 |
+
"# Function to create a sanitized column name\n",
|
231 |
+
"def sanitize_column_name(col_name):\n",
|
232 |
+
" # Remove special characters and replace spaces with underscores\n",
|
233 |
+
" return re.sub(r\"\\W+\", \"_\", col_name)\n",
|
234 |
+
"\n",
|
235 |
+
"\n",
|
236 |
+
"# Function to create a table from a DataFrame using SQLAlchemy\n",
|
237 |
+
"def create_table_from_dataframe(\n",
|
238 |
+
" df: pd.DataFrame, table_name: str, engine, metadata_obj\n",
|
239 |
+
"):\n",
|
240 |
+
" # Sanitize column names\n",
|
241 |
+
" sanitized_columns = {col: sanitize_column_name(col) for col in df.columns}\n",
|
242 |
+
" df = df.rename(columns=sanitized_columns)\n",
|
243 |
+
"\n",
|
244 |
+
" # Dynamically create columns based on DataFrame columns and data types\n",
|
245 |
+
" columns = [\n",
|
246 |
+
" Column(col, String if dtype == \"object\" else Integer)\n",
|
247 |
+
" for col, dtype in zip(df.columns, df.dtypes)\n",
|
248 |
+
" ]\n",
|
249 |
+
"\n",
|
250 |
+
" # Create a table with the defined columns\n",
|
251 |
+
" table = Table(table_name, metadata_obj, *columns)\n",
|
252 |
+
"\n",
|
253 |
+
" # Create the table in the database\n",
|
254 |
+
" metadata_obj.create_all(engine)\n",
|
255 |
+
"\n",
|
256 |
+
" # Insert data from DataFrame into the table\n",
|
257 |
+
" with engine.connect() as conn:\n",
|
258 |
+
" for _, row in df.iterrows():\n",
|
259 |
+
" insert_stmt = table.insert().values(**row.to_dict())\n",
|
260 |
+
" conn.execute(insert_stmt)\n",
|
261 |
+
" conn.commit()\n",
|
262 |
+
"\n",
|
263 |
+
"\n",
|
264 |
+
"engine = create_engine(\"sqlite:///:memory:\")\n",
|
265 |
+
"metadata_obj = MetaData()\n",
|
266 |
+
"for idx, df in enumerate(dfs):\n",
|
267 |
+
" tableinfo = _get_tableinfo_with_index(idx)\n",
|
268 |
+
" print(f\"Creating table: {tableinfo.table_name}\")\n",
|
269 |
+
" create_table_from_dataframe(df, tableinfo.table_name, engine, metadata_obj)"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "markdown",
|
274 |
+
"metadata": {},
|
275 |
+
"source": [
|
276 |
+
"Setup Arize Phoenix for observability\n"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "code",
|
281 |
+
"execution_count": null,
|
282 |
+
"metadata": {},
|
283 |
+
"outputs": [],
|
284 |
+
"source": [
|
285 |
+
"from openinference.instrumentation.llama_index import LlamaIndexInstrumentor\n",
|
286 |
+
"from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter\n",
|
287 |
+
"from opentelemetry.sdk import trace as trace_sdk\n",
|
288 |
+
"from opentelemetry.sdk.trace.export import SimpleSpanProcessor\n",
|
289 |
+
"\n",
|
290 |
+
"endpoint = \"http://127.0.0.1:6006/v1/traces\" # Phoenix receiver address\n",
|
291 |
+
"\n",
|
292 |
+
"tracer_provider = trace_sdk.TracerProvider()\n",
|
293 |
+
"tracer_provider.add_span_processor(\n",
|
294 |
+
" SimpleSpanProcessor(OTLPSpanExporter(endpoint)))\n",
|
295 |
+
"\n",
|
296 |
+
"LlamaIndexInstrumentor().instrument(tracer_provider=tracer_provider)"
|
297 |
+
]
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"cell_type": "markdown",
|
301 |
+
"metadata": {},
|
302 |
+
"source": [
|
303 |
+
"## Advanced Capability 1: Text-to-SQL with Query-Time Table Retrieval.\n",
|
304 |
+
"\n",
|
305 |
+
"We now show you how to setup an e2e text-to-SQL with table retrieval.\n",
|
306 |
+
"\n",
|
307 |
+
"Here we define the core modules.\n",
|
308 |
+
"\n",
|
309 |
+
"1. Object index + retriever to store table schemas\n",
|
310 |
+
"2. SQLDatabase object to connect to the above tables + SQLRetriever.\n",
|
311 |
+
"3. Text-to-SQL Prompt\n",
|
312 |
+
"4. Response synthesis Prompt\n",
|
313 |
+
"5. LLM\n",
|
314 |
+
"\n",
|
315 |
+
"### 1. Object index, retriever, SQLDatabase\n"
|
316 |
+
]
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"cell_type": "code",
|
320 |
+
"execution_count": null,
|
321 |
+
"metadata": {},
|
322 |
+
"outputs": [],
|
323 |
+
"source": [
|
324 |
+
"from llama_index.core.objects import (\n",
|
325 |
+
" SQLTableNodeMapping,\n",
|
326 |
+
" ObjectIndex,\n",
|
327 |
+
" SQLTableSchema,\n",
|
328 |
+
")\n",
|
329 |
+
"from llama_index.core import SQLDatabase, VectorStoreIndex\n",
|
330 |
+
"\n",
|
331 |
+
"sql_database = SQLDatabase(engine)\n",
|
332 |
+
"\n",
|
333 |
+
"table_node_mapping = SQLTableNodeMapping(sql_database)\n",
|
334 |
+
"\n",
|
335 |
+
"table_schema_objs = [\n",
|
336 |
+
" SQLTableSchema(table_name=t.table_name, context_str=t.table_summary)\n",
|
337 |
+
" for t in table_infos\n",
|
338 |
+
"] # add a SQLTableSchema for each table\n",
|
339 |
+
"\n",
|
340 |
+
"obj_index = ObjectIndex.from_objects(objects=table_schema_objs,\n",
|
341 |
+
" object_mapping=table_node_mapping,\n",
|
342 |
+
" index_cls=VectorStoreIndex,\n",
|
343 |
+
" )\n",
|
344 |
+
"obj_retriever = obj_index.as_retriever(similarity_top_k=3)"
|
345 |
+
]
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"cell_type": "markdown",
|
349 |
+
"metadata": {},
|
350 |
+
"source": [
|
351 |
+
"### 2. SQLRetriever + Table Parser\n"
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"cell_type": "code",
|
356 |
+
"execution_count": null,
|
357 |
+
"metadata": {},
|
358 |
+
"outputs": [],
|
359 |
+
"source": [
|
360 |
+
"from llama_index.core.retrievers import SQLRetriever\n",
|
361 |
+
"from typing import List\n",
|
362 |
+
"from llama_index.core.query_pipeline import FnComponent\n",
|
363 |
+
"\n",
|
364 |
+
"sql_retriever = SQLRetriever(sql_database)\n",
|
365 |
+
"\n",
|
366 |
+
"\n",
|
367 |
+
"def get_table_context_str(table_schema_objs: List[SQLTableSchema]):\n",
|
368 |
+
" \"\"\"Get table context string.\"\"\"\n",
|
369 |
+
" context_strs = []\n",
|
370 |
+
" for table_schema_obj in table_schema_objs:\n",
|
371 |
+
" table_info = sql_database.get_single_table_info(\n",
|
372 |
+
" table_schema_obj.table_name\n",
|
373 |
+
" )\n",
|
374 |
+
" if table_schema_obj.context_str:\n",
|
375 |
+
" table_opt_context = \" The table description is: \"\n",
|
376 |
+
" table_opt_context += table_schema_obj.context_str\n",
|
377 |
+
" table_info += table_opt_context\n",
|
378 |
+
"\n",
|
379 |
+
" context_strs.append(table_info)\n",
|
380 |
+
" return \"\\n\\n\".join(context_strs)\n",
|
381 |
+
"\n",
|
382 |
+
"\n",
|
383 |
+
"table_parser_component = FnComponent(fn=get_table_context_str)"
|
384 |
+
]
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"cell_type": "markdown",
|
388 |
+
"metadata": {},
|
389 |
+
"source": [
|
390 |
+
"### 3. Text-to-SQL Prompt + Output Parser\n"
|
391 |
+
]
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"cell_type": "code",
|
395 |
+
"execution_count": null,
|
396 |
+
"metadata": {},
|
397 |
+
"outputs": [],
|
398 |
+
"source": [
|
399 |
+
"from llama_index.core.prompts.default_prompts import DEFAULT_TEXT_TO_SQL_PROMPT\n",
|
400 |
+
"from llama_index.core import PromptTemplate\n",
|
401 |
+
"from llama_index.core.query_pipeline import FnComponent\n",
|
402 |
+
"from llama_index.core.llms import ChatResponse\n",
|
403 |
+
"\n",
|
404 |
+
"\n",
|
405 |
+
"def extract_sql_query(content: str) -> str:\n",
|
406 |
+
" sql_query_start = content.find(\"SQLQuery:\")\n",
|
407 |
+
" if sql_query_start == -1:\n",
|
408 |
+
" raise ValueError(\"No 'SQLQuery:' marker found in the response content\")\n",
|
409 |
+
"\n",
|
410 |
+
" query_content = content[sql_query_start + len(\"SQLQuery:\"):]\n",
|
411 |
+
" sql_result_start = query_content.find(\"SQLResult:\")\n",
|
412 |
+
"\n",
|
413 |
+
" if sql_result_start != -1:\n",
|
414 |
+
" query_content = query_content[:sql_result_start]\n",
|
415 |
+
"\n",
|
416 |
+
" return query_content\n",
|
417 |
+
"\n",
|
418 |
+
"\n",
|
419 |
+
"def clean_sql_query(query: str) -> str:\n",
|
420 |
+
" return query.strip().strip(\"```\").strip()\n",
|
421 |
+
"\n",
|
422 |
+
"\n",
|
423 |
+
"def parse_response_to_sql(response: ChatResponse) -> str:\n",
|
424 |
+
" \"\"\"\n",
|
425 |
+
" Parse a ChatResponse object to extract the SQL query.\n",
|
426 |
+
"\n",
|
427 |
+
" This function takes a ChatResponse object, which is expected to contain\n",
|
428 |
+
" an SQL query within its content, and extracts the SQL query string.\n",
|
429 |
+
" The function looks for specific markers ('SQLQuery:' and 'SQLResult:')\n",
|
430 |
+
" to identify the SQL query portion of the response.\n",
|
431 |
+
"\n",
|
432 |
+
" Args:\n",
|
433 |
+
" response (ChatResponse): A ChatResponse object containing the response\n",
|
434 |
+
" from a text-to-SQL model.\n",
|
435 |
+
"\n",
|
436 |
+
" Returns:\n",
|
437 |
+
" str: The extracted SQL query as a string, with surrounding whitespace\n",
|
438 |
+
" and code block markers (```) removed.\n",
|
439 |
+
"\n",
|
440 |
+
" Raises:\n",
|
441 |
+
" AttributeError: If the input doesn't have the expected 'message.content' attribute.\n",
|
442 |
+
" ValueError: If no 'SQLQuery:' marker is found in the response content.\n",
|
443 |
+
"\n",
|
444 |
+
" Note:\n",
|
445 |
+
" - The function assumes that the SQL query is preceded by 'SQLQuery:' \n",
|
446 |
+
" and optionally followed by 'SQLResult:'.\n",
|
447 |
+
" - Any content before 'SQLQuery:' or after 'SQLResult:' is discarded.\n",
|
448 |
+
" - The function removes leading/trailing whitespace and code block markers.\n",
|
449 |
+
"\n",
|
450 |
+
" Example:\n",
|
451 |
+
" >>> response = ChatResponse(message=Message(content=\"Some text\\nSQLQuery: SELECT * FROM table\\nSQLResult: ...\"))\n",
|
452 |
+
" >>> sql_query = parse_response_to_sql(response)\n",
|
453 |
+
" >>> print(sql_query)\n",
|
454 |
+
" SELECT * FROM table\n",
|
455 |
+
" \"\"\"\n",
|
456 |
+
" try:\n",
|
457 |
+
" content = str(response.message.content)\n",
|
458 |
+
" except AttributeError:\n",
|
459 |
+
" raise ValueError(\n",
|
460 |
+
" \"Input must be a ChatResponse object with a 'message.content' attribute\")\n",
|
461 |
+
"\n",
|
462 |
+
" sql_query = extract_sql_query(content)\n",
|
463 |
+
" return clean_sql_query(sql_query)\n",
|
464 |
+
"\n",
|
465 |
+
"\n",
|
466 |
+
"sql_parser_component = FnComponent(fn=parse_response_to_sql)\n",
|
467 |
+
"\n",
|
468 |
+
"text2sql_prompt = DEFAULT_TEXT_TO_SQL_PROMPT.partial_format(\n",
|
469 |
+
" dialect=engine.dialect.name\n",
|
470 |
+
")\n",
|
471 |
+
"print(text2sql_prompt.template)"
|
472 |
+
]
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"cell_type": "markdown",
|
476 |
+
"metadata": {},
|
477 |
+
"source": [
|
478 |
+
"### 4. Response Synthesis Prompt\n"
|
479 |
+
]
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"cell_type": "code",
|
483 |
+
"execution_count": null,
|
484 |
+
"metadata": {},
|
485 |
+
"outputs": [],
|
486 |
+
"source": [
|
487 |
+
"response_synthesis_prompt_str = (\n",
|
488 |
+
" \"Given an input question, synthesize a response from the query results.\\n\"\n",
|
489 |
+
" \"Query: {query_str}\\n\"\n",
|
490 |
+
" \"SQL: {sql_query}\\n\"\n",
|
491 |
+
" \"SQL Response: {context_str}\\n\"\n",
|
492 |
+
" \"Response: \"\n",
|
493 |
+
")\n",
|
494 |
+
"response_synthesis_prompt = PromptTemplate(\n",
|
495 |
+
" response_synthesis_prompt_str,\n",
|
496 |
+
")"
|
497 |
+
]
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"cell_type": "markdown",
|
501 |
+
"metadata": {},
|
502 |
+
"source": [
|
503 |
+
"### 5. LLM\n"
|
504 |
+
]
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"cell_type": "code",
|
508 |
+
"execution_count": null,
|
509 |
+
"metadata": {},
|
510 |
+
"outputs": [],
|
511 |
+
"source": [
|
512 |
+
"llm = OpenAI(model=\"gpt-3.5-turbo\")"
|
513 |
+
]
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"cell_type": "markdown",
|
517 |
+
"metadata": {},
|
518 |
+
"source": [
|
519 |
+
"#### Define Query Pipeline\n",
|
520 |
+
"\n",
|
521 |
+
"Now that the components are in place, let's define the query pipeline!\n"
|
522 |
+
]
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"cell_type": "code",
|
526 |
+
"execution_count": null,
|
527 |
+
"metadata": {},
|
528 |
+
"outputs": [],
|
529 |
+
"source": [
|
530 |
+
"from llama_index.core.query_pipeline import (\n",
|
531 |
+
" QueryPipeline as QP,\n",
|
532 |
+
" Link,\n",
|
533 |
+
" InputComponent,\n",
|
534 |
+
" CustomQueryComponent,\n",
|
535 |
+
")\n",
|
536 |
+
"\n",
|
537 |
+
"qp = QP(\n",
|
538 |
+
" modules={\n",
|
539 |
+
" \"input\": InputComponent(),\n",
|
540 |
+
" \"table_retriever\": obj_retriever,\n",
|
541 |
+
" \"table_output_parser\": table_parser_component,\n",
|
542 |
+
" \"text2sql_prompt\": text2sql_prompt,\n",
|
543 |
+
" \"text2sql_llm\": llm,\n",
|
544 |
+
" \"sql_output_parser\": sql_parser_component,\n",
|
545 |
+
" \"sql_retriever\": sql_retriever,\n",
|
546 |
+
" \"response_synthesis_prompt\": response_synthesis_prompt,\n",
|
547 |
+
" \"response_synthesis_llm\": llm,\n",
|
548 |
+
" },\n",
|
549 |
+
" verbose=True,\n",
|
550 |
+
")\n",
|
551 |
+
"qp"
|
552 |
+
]
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"cell_type": "code",
|
556 |
+
"execution_count": null,
|
557 |
+
"metadata": {},
|
558 |
+
"outputs": [],
|
559 |
+
"source": [
|
560 |
+
"qp.add_chain([\"input\", \"table_retriever\", \"table_output_parser\"])\n",
|
561 |
+
"qp.add_link(\"input\", \"text2sql_prompt\", dest_key=\"query_str\")\n",
|
562 |
+
"qp.add_link(\"table_output_parser\", \"text2sql_prompt\", dest_key=\"schema\")\n",
|
563 |
+
"qp.add_chain(\n",
|
564 |
+
" [\"text2sql_prompt\", \"text2sql_llm\", \"sql_output_parser\", \"sql_retriever\"]\n",
|
565 |
+
")\n",
|
566 |
+
"qp.add_link(\n",
|
567 |
+
" \"sql_output_parser\", \"response_synthesis_prompt\", dest_key=\"sql_query\"\n",
|
568 |
+
")\n",
|
569 |
+
"qp.add_link(\n",
|
570 |
+
" \"sql_retriever\", \"response_synthesis_prompt\", dest_key=\"context_str\"\n",
|
571 |
+
")\n",
|
572 |
+
"qp.add_link(\"input\", \"response_synthesis_prompt\", dest_key=\"query_str\")\n",
|
573 |
+
"qp.add_link(\"response_synthesis_prompt\", \"response_synthesis_llm\")"
|
574 |
+
]
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"cell_type": "markdown",
|
578 |
+
"metadata": {},
|
579 |
+
"source": [
|
580 |
+
"#### Visualize Query Pipeline\n",
|
581 |
+
"\n",
|
582 |
+
"A really nice property of the query pipeline syntax is you can easily visualize it in a graph via networkx.\n"
|
583 |
+
]
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"cell_type": "code",
|
587 |
+
"execution_count": null,
|
588 |
+
"metadata": {},
|
589 |
+
"outputs": [],
|
590 |
+
"source": [
|
591 |
+
"from pyvis.network import Network\n",
|
592 |
+
"\n",
|
593 |
+
"net = Network(notebook=True, cdn_resources=\"in_line\", directed=True)\n",
|
594 |
+
"net.from_nx(qp.dag)"
|
595 |
+
]
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"cell_type": "code",
|
599 |
+
"execution_count": null,
|
600 |
+
"metadata": {},
|
601 |
+
"outputs": [],
|
602 |
+
"source": [
|
603 |
+
"# Save the network as \"text2sql_dag.html\"\n",
|
604 |
+
"net.write_html(\"text2sql_dag.html\")"
|
605 |
+
]
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"cell_type": "code",
|
609 |
+
"execution_count": null,
|
610 |
+
"metadata": {},
|
611 |
+
"outputs": [],
|
612 |
+
"source": [
|
613 |
+
"from IPython.display import display, HTML\n",
|
614 |
+
"\n",
|
615 |
+
"# Read the contents of the HTML file\n",
|
616 |
+
"with open(\"text2sql_dag.html\", \"r\") as file:\n",
|
617 |
+
" html_content = file.read()\n",
|
618 |
+
"\n",
|
619 |
+
"# Display the HTML content\n",
|
620 |
+
"display(HTML(html_content))"
|
621 |
+
]
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"cell_type": "markdown",
|
625 |
+
"metadata": {},
|
626 |
+
"source": [
|
627 |
+
"### Run Some Queries!\n",
|
628 |
+
"\n",
|
629 |
+
"Now we're ready to run some queries across this entire pipeline.\n"
|
630 |
+
]
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"cell_type": "code",
|
634 |
+
"execution_count": null,
|
635 |
+
"metadata": {},
|
636 |
+
"outputs": [],
|
637 |
+
"source": [
|
638 |
+
"response = qp.run(\n",
|
639 |
+
" query=\"What was the year that The Notorious B.I.G was signed to Bad Boy?\"\n",
|
640 |
+
")\n",
|
641 |
+
"print(str(response))"
|
642 |
+
]
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"cell_type": "code",
|
646 |
+
"execution_count": null,
|
647 |
+
"metadata": {},
|
648 |
+
"outputs": [],
|
649 |
+
"source": [
|
650 |
+
"response = qp.run(query=\"Who won best director in the 1972 academy awards\")\n",
|
651 |
+
"print(str(response))"
|
652 |
+
]
|
653 |
+
},
|
654 |
+
{
|
655 |
+
"cell_type": "markdown",
|
656 |
+
"metadata": {},
|
657 |
+
"source": [
|
658 |
+
"## Advanced Capability 2: Text-to-SQL with Query-Time Row Retrieval (along with Table Retrieval)\n",
|
659 |
+
"\n",
|
660 |
+
"One problem in the previous example is that if the user asks a query that asks for \"The Notorious BIG\" but the artist is stored as \"The Notorious B.I.G\", then the generated SELECT statement will likely not return any matches.\n",
|
661 |
+
"\n",
|
662 |
+
"We can alleviate this problem by fetching a small number of example rows per table. A naive option would be to just take the first k rows. Instead, we embed, index, and retrieve k relevant rows given the user query to give the text-to-SQL LLM the most contextually relevant information for SQL generation.\n",
|
663 |
+
"\n",
|
664 |
+
"We now extend our query pipeline.\n",
|
665 |
+
"\n",
|
666 |
+
"## Index Each Table\n",
|
667 |
+
"\n",
|
668 |
+
"We embed/index the rows of each table, resulting in one index per table.\n"
|
669 |
+
]
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"cell_type": "code",
|
673 |
+
"execution_count": null,
|
674 |
+
"metadata": {},
|
675 |
+
"outputs": [],
|
676 |
+
"source": [
|
677 |
+
"import logging\n",
|
678 |
+
"from pathlib import Path\n",
|
679 |
+
"from typing import Dict, Optional\n",
|
680 |
+
"from llama_index.core import VectorStoreIndex, load_index_from_storage\n",
|
681 |
+
"from llama_index.core.schema import TextNode\n",
|
682 |
+
"from llama_index.core import StorageContext\n",
|
683 |
+
"from sqlalchemy.exc import SQLAlchemyError\n",
|
684 |
+
"from sqlalchemy import text\n",
|
685 |
+
"\n",
|
686 |
+
"logger = logging.getLogger(__name__)\n",
|
687 |
+
"\n",
|
688 |
+
"\n",
|
689 |
+
"def get_table_rows(engine, table_name: str):\n",
|
690 |
+
" try:\n",
|
691 |
+
" with engine.connect() as conn:\n",
|
692 |
+
" cursor = conn.execute(text(f'SELECT * FROM \"{table_name}\"'))\n",
|
693 |
+
" return [tuple(row) for row in cursor.fetchall()]\n",
|
694 |
+
" except SQLAlchemyError as e:\n",
|
695 |
+
" logger.error(f\"Error fetching rows from table {table_name}: {str(e)}\")\n",
|
696 |
+
" raise\n",
|
697 |
+
"\n",
|
698 |
+
"\n",
|
699 |
+
"def create_index(rows, index_path: Path):\n",
|
700 |
+
" nodes = [TextNode(text=str(t)) for t in rows]\n",
|
701 |
+
" index = VectorStoreIndex(nodes)\n",
|
702 |
+
" index.set_index_id(\"vector_index\")\n",
|
703 |
+
" index.storage_context.persist(str(index_path))\n",
|
704 |
+
" return index\n",
|
705 |
+
"\n",
|
706 |
+
"\n",
|
707 |
+
"def load_existing_index(index_path: Path):\n",
|
708 |
+
" storage_context = StorageContext.from_defaults(persist_dir=str(index_path))\n",
|
709 |
+
" return load_index_from_storage(storage_context, index_id=\"vector_index\")\n",
|
710 |
+
"\n",
|
711 |
+
"\n",
|
712 |
+
"def index_all_tables(\n",
|
713 |
+
" sql_database,\n",
|
714 |
+
" table_index_dir: str = \"table_index_dir\",\n",
|
715 |
+
" force_refresh: bool = False,\n",
|
716 |
+
" tables_to_index: Optional[list] = None\n",
|
717 |
+
") -> Dict[str, VectorStoreIndex]:\n",
|
718 |
+
" \"\"\"\n",
|
719 |
+
" Create or load vector store indexes for specified tables in the given SQL database.\n",
|
720 |
+
"\n",
|
721 |
+
" Args:\n",
|
722 |
+
" sql_database: An instance of SQLDatabase containing the tables to be indexed.\n",
|
723 |
+
" table_index_dir (str): The directory where the indexes will be stored.\n",
|
724 |
+
" force_refresh (bool): If True, recreate all indexes even if they already exist.\n",
|
725 |
+
" tables_to_index (Optional[list]): List of table names to index. If None, index all usable tables.\n",
|
726 |
+
"\n",
|
727 |
+
" Returns:\n",
|
728 |
+
" Dict[str, VectorStoreIndex]: A dictionary of table names to their VectorStoreIndex objects.\n",
|
729 |
+
"\n",
|
730 |
+
" Raises:\n",
|
731 |
+
" OSError: If there's an error creating or accessing the table_index_dir.\n",
|
732 |
+
" SQLAlchemyError: If there's an error connecting to the database or executing SQL queries.\n",
|
733 |
+
" \"\"\"\n",
|
734 |
+
" index_dir = Path(table_index_dir)\n",
|
735 |
+
" index_dir.mkdir(parents=True, exist_ok=True)\n",
|
736 |
+
"\n",
|
737 |
+
" vector_index_dict = {}\n",
|
738 |
+
" tables = tables_to_index or sql_database.get_usable_table_names()\n",
|
739 |
+
"\n",
|
740 |
+
" for table_name in tables:\n",
|
741 |
+
" index_path = index_dir / table_name\n",
|
742 |
+
" logger.info(f\"Processing table: {table_name}\")\n",
|
743 |
+
"\n",
|
744 |
+
" try:\n",
|
745 |
+
" if not index_path.exists() or force_refresh:\n",
|
746 |
+
" logger.info(f\"Creating new index for table: {table_name}\")\n",
|
747 |
+
" rows = get_table_rows(sql_database.engine, table_name)\n",
|
748 |
+
" index = create_index(rows, index_path)\n",
|
749 |
+
" else:\n",
|
750 |
+
" logger.info(f\"Loading existing index for table: {table_name}\")\n",
|
751 |
+
" index = load_existing_index(index_path)\n",
|
752 |
+
"\n",
|
753 |
+
" vector_index_dict[table_name] = index\n",
|
754 |
+
"\n",
|
755 |
+
" except (OSError, SQLAlchemyError) as e:\n",
|
756 |
+
" logger.error(f\"Error processing table {table_name}: {str(e)}\")\n",
|
757 |
+
" # Decide whether to continue with other tables or raise the exception\n",
|
758 |
+
"\n",
|
759 |
+
" return vector_index_dict\n",
|
760 |
+
"\n",
|
761 |
+
"\n",
|
762 |
+
"vector_index_dict = index_all_tables(sql_database)"
|
763 |
+
]
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"cell_type": "code",
|
767 |
+
"execution_count": null,
|
768 |
+
"metadata": {},
|
769 |
+
"outputs": [],
|
770 |
+
"source": [
|
771 |
+
"test_retriever = vector_index_dict[\"Bad_Boy_Artists\"].as_retriever(\n",
|
772 |
+
" similarity_top_k=1\n",
|
773 |
+
")\n",
|
774 |
+
"nodes = test_retriever.retrieve(\"P. Diddy\")\n",
|
775 |
+
"print(nodes[0].get_content())"
|
776 |
+
]
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"cell_type": "markdown",
|
780 |
+
"metadata": {},
|
781 |
+
"source": [
|
782 |
+
"### Define Expanded Table Parser Component\n",
|
783 |
+
"\n",
|
784 |
+
"We expand the capability of our table_parser_component to not only return the relevant table schemas, but also return relevant rows per table schema.\n",
|
785 |
+
"\n",
|
786 |
+
"It now takes in both table_schema_objs (output of table retriever), but also the original query_str which will then be used for vector retrieval of relevant rows.\n"
|
787 |
+
]
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"cell_type": "code",
|
791 |
+
"execution_count": null,
|
792 |
+
"metadata": {},
|
793 |
+
"outputs": [],
|
794 |
+
"source": [
|
795 |
+
"from llama_index.core.retrievers import SQLRetriever\n",
|
796 |
+
"from typing import List\n",
|
797 |
+
"from llama_index.core.query_pipeline import FnComponent\n",
|
798 |
+
"\n",
|
799 |
+
"sql_retriever = SQLRetriever(sql_database)\n",
|
800 |
+
"\n",
|
801 |
+
"\n",
|
802 |
+
"def get_table_context_and_rows_str(\n",
|
803 |
+
" query_str: str, table_schema_objs: List[SQLTableSchema]\n",
|
804 |
+
"):\n",
|
805 |
+
" \"\"\"Get table context string.\"\"\"\n",
|
806 |
+
" context_strs = []\n",
|
807 |
+
" for table_schema_obj in table_schema_objs:\n",
|
808 |
+
" # first append table info + additional context\n",
|
809 |
+
" table_info = sql_database.get_single_table_info(\n",
|
810 |
+
" table_schema_obj.table_name\n",
|
811 |
+
" )\n",
|
812 |
+
" if table_schema_obj.context_str:\n",
|
813 |
+
" table_opt_context = \" The table description is: \"\n",
|
814 |
+
" table_opt_context += table_schema_obj.context_str\n",
|
815 |
+
" table_info += table_opt_context\n",
|
816 |
+
"\n",
|
817 |
+
" # also lookup vector index to return relevant table rows\n",
|
818 |
+
" vector_retriever = vector_index_dict[\n",
|
819 |
+
" table_schema_obj.table_name\n",
|
820 |
+
" ].as_retriever(similarity_top_k=2)\n",
|
821 |
+
" relevant_nodes = vector_retriever.retrieve(query_str)\n",
|
822 |
+
" if len(relevant_nodes) > 0:\n",
|
823 |
+
" table_row_context = \"\\nHere are some relevant example rows (values in the same order as columns above)\\n\"\n",
|
824 |
+
" for node in relevant_nodes:\n",
|
825 |
+
" table_row_context += str(node.get_content()) + \"\\n\"\n",
|
826 |
+
" table_info += table_row_context\n",
|
827 |
+
"\n",
|
828 |
+
" context_strs.append(table_info)\n",
|
829 |
+
" return \"\\n\\n\".join(context_strs)\n",
|
830 |
+
"\n",
|
831 |
+
"\n",
|
832 |
+
"table_parser_component = FnComponent(fn=get_table_context_and_rows_str)"
|
833 |
+
]
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"cell_type": "markdown",
|
837 |
+
"metadata": {},
|
838 |
+
"source": [
|
839 |
+
"### Define Expanded Query Pipeline\n",
|
840 |
+
"\n",
|
841 |
+
"This looks similar to the query pipeline in section 1, but with an upgraded table_parser_component.\n"
|
842 |
+
]
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"cell_type": "code",
|
846 |
+
"execution_count": null,
|
847 |
+
"metadata": {},
|
848 |
+
"outputs": [],
|
849 |
+
"source": [
|
850 |
+
"from llama_index.core.query_pipeline import (\n",
|
851 |
+
" QueryPipeline as QP,\n",
|
852 |
+
" Link,\n",
|
853 |
+
" InputComponent,\n",
|
854 |
+
" CustomQueryComponent,\n",
|
855 |
+
")\n",
|
856 |
+
"\n",
|
857 |
+
"qp = QP(\n",
|
858 |
+
" modules={\n",
|
859 |
+
" \"input\": InputComponent(),\n",
|
860 |
+
" \"table_retriever\": obj_retriever,\n",
|
861 |
+
" \"table_output_parser\": table_parser_component,\n",
|
862 |
+
" \"text2sql_prompt\": text2sql_prompt,\n",
|
863 |
+
" \"text2sql_llm\": llm,\n",
|
864 |
+
" \"sql_output_parser\": sql_parser_component,\n",
|
865 |
+
" \"sql_retriever\": sql_retriever,\n",
|
866 |
+
" \"response_synthesis_prompt\": response_synthesis_prompt,\n",
|
867 |
+
" \"response_synthesis_llm\": llm,\n",
|
868 |
+
" },\n",
|
869 |
+
" verbose=True,\n",
|
870 |
+
")\n",
|
871 |
+
"qp"
|
872 |
+
]
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"cell_type": "code",
|
876 |
+
"execution_count": null,
|
877 |
+
"metadata": {},
|
878 |
+
"outputs": [],
|
879 |
+
"source": [
|
880 |
+
"qp.add_link(\"input\", \"table_retriever\")\n",
|
881 |
+
"qp.add_link(\"input\", \"table_output_parser\", dest_key=\"query_str\")\n",
|
882 |
+
"qp.add_link(\n",
|
883 |
+
" \"table_retriever\", \"table_output_parser\", dest_key=\"table_schema_objs\"\n",
|
884 |
+
")\n",
|
885 |
+
"qp.add_link(\"input\", \"text2sql_prompt\", dest_key=\"query_str\")\n",
|
886 |
+
"qp.add_link(\"table_output_parser\", \"text2sql_prompt\", dest_key=\"schema\")\n",
|
887 |
+
"qp.add_chain(\n",
|
888 |
+
" [\"text2sql_prompt\", \"text2sql_llm\", \"sql_output_parser\", \"sql_retriever\"]\n",
|
889 |
+
")\n",
|
890 |
+
"qp.add_link(\n",
|
891 |
+
" \"sql_output_parser\", \"response_synthesis_prompt\", dest_key=\"sql_query\"\n",
|
892 |
+
")\n",
|
893 |
+
"qp.add_link(\n",
|
894 |
+
" \"sql_retriever\", \"response_synthesis_prompt\", dest_key=\"context_str\"\n",
|
895 |
+
")\n",
|
896 |
+
"qp.add_link(\"input\", \"response_synthesis_prompt\", dest_key=\"query_str\")\n",
|
897 |
+
"qp.add_link(\"response_synthesis_prompt\", \"response_synthesis_llm\")"
|
898 |
+
]
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"cell_type": "markdown",
|
902 |
+
"metadata": {},
|
903 |
+
"source": [
|
904 |
+
"### Run Some Queries\n",
|
905 |
+
"\n",
|
906 |
+
"We can now ask about relevant entries even if it doesn't exactly match the entry in the database.\n"
|
907 |
+
]
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"cell_type": "code",
|
911 |
+
"execution_count": null,
|
912 |
+
"metadata": {},
|
913 |
+
"outputs": [],
|
914 |
+
"source": [
|
915 |
+
"response = qp.run(\n",
|
916 |
+
" query=\"What was the year that The Notorious BIG was signed to Bad Boy?\"\n",
|
917 |
+
")\n",
|
918 |
+
"print(str(response))"
|
919 |
+
]
|
920 |
+
}
|
921 |
+
],
|
922 |
+
"metadata": {
|
923 |
+
"kernelspec": {
|
924 |
+
"display_name": "llama",
|
925 |
+
"language": "python",
|
926 |
+
"name": "python3"
|
927 |
+
},
|
928 |
+
"language_info": {
|
929 |
+
"codemirror_mode": {
|
930 |
+
"name": "ipython",
|
931 |
+
"version": 3
|
932 |
+
},
|
933 |
+
"file_extension": ".py",
|
934 |
+
"mimetype": "text/x-python",
|
935 |
+
"name": "python",
|
936 |
+
"nbconvert_exporter": "python",
|
937 |
+
"pygments_lexer": "ipython3",
|
938 |
+
"version": "3.11.9"
|
939 |
+
}
|
940 |
+
},
|
941 |
+
"nbformat": 4,
|
942 |
+
"nbformat_minor": 2
|
943 |
+
}
|