Spaces:
Runtime error
Runtime error
File size: 10,997 Bytes
a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# Copyright (c) SenseTime Research. All rights reserved.
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import glob
import torch
import torch.utils.cpp_extension
import importlib
import hashlib
import shutil
from pathlib import Path
import re
import uuid
from torch.utils.file_baton import FileBaton
# ----------------------------------------------------------------------------
# Global options.
verbosity = 'brief' # Verbosity level: 'none', 'brief', 'full'
# ----------------------------------------------------------------------------
# Internal helper funcs.
def _find_compiler_bindir():
patterns = [
'C:/Program Files (x86)/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64',
'C:/Program Files (x86)/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64',
'C:/Program Files (x86)/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64',
'C:/Program Files (x86)/Microsoft Visual Studio */vc/bin',
]
for pattern in patterns:
matches = sorted(glob.glob(pattern))
if len(matches):
return matches[-1]
return None
def _get_mangled_gpu_name():
name = torch.cuda.get_device_name().lower()
out = []
for c in name:
if re.match('[a-z0-9_-]+', c):
out.append(c)
else:
out.append('-')
return ''.join(out)
# ----------------------------------------------------------------------------
# Main entry point for compiling and loading C++/CUDA plugins.
_cached_plugins = dict()
def get_plugin(module_name, sources, **build_kwargs):
assert verbosity in ['none', 'brief', 'full']
# Already cached?
if module_name in _cached_plugins:
return _cached_plugins[module_name]
# Print status.
if verbosity == 'full':
print(f'Setting up PyTorch plugin "{module_name}"...')
elif verbosity == 'brief':
print(
f'Setting up PyTorch plugin "{module_name}"... ', end='', flush=True)
try: # pylint: disable=too-many-nested-blocks
# Make sure we can find the necessary compiler binaries.
if os.name == 'nt' and os.system("where cl.exe >nul 2>nul") != 0:
compiler_bindir = _find_compiler_bindir()
if compiler_bindir is None:
raise RuntimeError(
f'Could not find MSVC/GCC/CLANG installation on this computer. Check _find_compiler_bindir() in "{__file__}".')
os.environ['PATH'] += ';' + compiler_bindir
# Compile and load.
verbose_build = (verbosity == 'full')
# Incremental build md5sum trickery. Copies all the input source files
# into a cached build directory under a combined md5 digest of the input
# source files. Copying is done only if the combined digest has changed.
# This keeps input file timestamps and filenames the same as in previous
# extension builds, allowing for fast incremental rebuilds.
#
# This optimization is done only in case all the source files reside in
# a single directory (just for simplicity) and if the TORCH_EXTENSIONS_DIR
# environment variable is set (we take this as a signal that the user
# actually cares about this.)
source_dirs_set = set(os.path.dirname(source) for source in sources)
if len(source_dirs_set) == 1 and ('TORCH_EXTENSIONS_DIR' in os.environ):
all_source_files = sorted(list(x for x in Path(
list(source_dirs_set)[0]).iterdir() if x.is_file()))
# Compute a combined hash digest for all source files in the same
# custom op directory (usually .cu, .cpp, .py and .h files).
hash_md5 = hashlib.md5()
for src in all_source_files:
with open(src, 'rb') as f:
hash_md5.update(f.read())
build_dir = torch.utils.cpp_extension._get_build_directory(
module_name, verbose=verbose_build) # pylint: disable=protected-access
digest_build_dir = os.path.join(build_dir, hash_md5.hexdigest())
if not os.path.isdir(digest_build_dir):
os.makedirs(digest_build_dir, exist_ok=True)
baton = FileBaton(os.path.join(digest_build_dir, 'lock'))
if baton.try_acquire():
try:
for src in all_source_files:
shutil.copyfile(src, os.path.join(
digest_build_dir, os.path.basename(src)))
finally:
baton.release()
else:
# Someone else is copying source files under the digest dir,
# wait until done and continue.
baton.wait()
digest_sources = [os.path.join(
digest_build_dir, os.path.basename(x)) for x in sources]
torch.utils.cpp_extension.load(name=module_name, build_directory=build_dir,
verbose=verbose_build, sources=digest_sources, **build_kwargs)
else:
torch.utils.cpp_extension.load(
name=module_name, verbose=verbose_build, sources=sources, **build_kwargs)
module = importlib.import_module(module_name)
except:
if verbosity == 'brief':
print('Failed!')
raise
# Print status and add to cache.
if verbosity == 'full':
print(f'Done setting up PyTorch plugin "{module_name}".')
elif verbosity == 'brief':
print('Done.')
_cached_plugins[module_name] = module
return module
# ----------------------------------------------------------------------------
def get_plugin_v3(module_name, sources, headers=None, source_dir=None, **build_kwargs):
assert verbosity in ['none', 'brief', 'full']
if headers is None:
headers = []
if source_dir is not None:
sources = [os.path.join(source_dir, fname) for fname in sources]
headers = [os.path.join(source_dir, fname) for fname in headers]
# Already cached?
if module_name in _cached_plugins:
return _cached_plugins[module_name]
# Print status.
if verbosity == 'full':
print(f'Setting up PyTorch plugin "{module_name}"...')
elif verbosity == 'brief':
print(
f'Setting up PyTorch plugin "{module_name}"... ', end='', flush=True)
verbose_build = (verbosity == 'full')
# Compile and load.
try: # pylint: disable=too-many-nested-blocks
# Make sure we can find the necessary compiler binaries.
if os.name == 'nt' and os.system("where cl.exe >nul 2>nul") != 0:
compiler_bindir = _find_compiler_bindir()
if compiler_bindir is None:
raise RuntimeError(
f'Could not find MSVC/GCC/CLANG installation on this computer. Check _find_compiler_bindir() in "{__file__}".')
os.environ['PATH'] += ';' + compiler_bindir
# Some containers set TORCH_CUDA_ARCH_LIST to a list that can either
# break the build or unnecessarily restrict what's available to nvcc.
# Unset it to let nvcc decide based on what's available on the
# machine.
os.environ['TORCH_CUDA_ARCH_LIST'] = ''
# Incremental build md5sum trickery. Copies all the input source files
# into a cached build directory under a combined md5 digest of the input
# source files. Copying is done only if the combined digest has changed.
# This keeps input file timestamps and filenames the same as in previous
# extension builds, allowing for fast incremental rebuilds.
#
# This optimization is done only in case all the source files reside in
# a single directory (just for simplicity) and if the TORCH_EXTENSIONS_DIR
# environment variable is set (we take this as a signal that the user
# actually cares about this.)
#
# EDIT: We now do it regardless of TORCH_EXTENSIOS_DIR, in order to work
# around the *.cu dependency bug in ninja config.
#
all_source_files = sorted(sources + headers)
all_source_dirs = set(os.path.dirname(fname)
for fname in all_source_files)
# and ('TORCH_EXTENSIONS_DIR' in os.environ):
if len(all_source_dirs) == 1:
# Compute combined hash digest for all source files.
hash_md5 = hashlib.md5()
for src in all_source_files:
with open(src, 'rb') as f:
hash_md5.update(f.read())
# Select cached build directory name.
source_digest = hash_md5.hexdigest()
build_top_dir = torch.utils.cpp_extension._get_build_directory(
module_name, verbose=verbose_build) # pylint: disable=protected-access
cached_build_dir = os.path.join(
build_top_dir, f'{source_digest}-{_get_mangled_gpu_name()}')
if not os.path.isdir(cached_build_dir):
tmpdir = f'{build_top_dir}/srctmp-{uuid.uuid4().hex}'
os.makedirs(tmpdir)
for src in all_source_files:
shutil.copyfile(src, os.path.join(
tmpdir, os.path.basename(src)))
try:
os.replace(tmpdir, cached_build_dir) # atomic
except OSError:
# source directory already exists, delete tmpdir and its contents.
shutil.rmtree(tmpdir)
if not os.path.isdir(cached_build_dir):
raise
# Compile.
cached_sources = [os.path.join(
cached_build_dir, os.path.basename(fname)) for fname in sources]
torch.utils.cpp_extension.load(name=module_name, build_directory=cached_build_dir,
verbose=verbose_build, sources=cached_sources, **build_kwargs)
else:
torch.utils.cpp_extension.load(
name=module_name, verbose=verbose_build, sources=sources, **build_kwargs)
# Load.
module = importlib.import_module(module_name)
except:
if verbosity == 'brief':
print('Failed!')
raise
# Print status and add to cache dict.
if verbosity == 'full':
print(f'Done setting up PyTorch plugin "{module_name}".')
elif verbosity == 'brief':
print('Done.')
_cached_plugins[module_name] = module
return module
|