File size: 5,509 Bytes
a0bcaae
 
bb0f5a9
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
 
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
 
bb0f5a9
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
bb0f5a9
a0bcaae
 
 
 
bb0f5a9
 
a0bcaae
bb0f5a9
 
 
a0bcaae
 
 
 
 
 
bb0f5a9
 
 
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
 
 
 
 
 
bb0f5a9
a0bcaae
bb0f5a9
 
a0bcaae
 
 
 
 
 
 
 
bb0f5a9
 
a0bcaae
 
 
 
bb0f5a9
a0bcaae
 
 
bb0f5a9
 
a0bcaae
bb0f5a9
a0bcaae
 
bb0f5a9
a0bcaae
bb0f5a9
a0bcaae
bb0f5a9
 
 
 
a0bcaae
 
 
 
 
bb0f5a9
 
a0bcaae
 
 
bb0f5a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (c) SenseTime Research. All rights reserved.

# interpolate between two z code
# score all middle latent code
# https://www.aiuai.cn/aifarm1929.html

import os
import re
from typing import List
from tqdm import tqdm
import click
import dnnlib
import numpy as np
import PIL.Image
import torch
import click
import legacy
import random
from typing import List, Optional


def lerp(code1, code2, alpha):
    return code1 * alpha + code2 * (1 - alpha)

# Taken and adapted from wikipedia's slerp article
# https://en.wikipedia.org/wiki/Slerp


def slerp(code1, code2, alpha, DOT_THRESHOLD=0.9995):  # Spherical linear interpolation
    code1_copy = np.copy(code1)
    code2_copy = np.copy(code2)

    code1 = code1 / np.linalg.norm(code1)
    code2 = code2 / np.linalg.norm(code2)
    dot = np.sum(code1 * code2)
    if np.abs(dot) > DOT_THRESHOLD:
        return lerp(code1_copy, code2_copy, alpha)

    # Calculate initial angle between v0 and v1
    theta_0 = np.arccos(dot)
    sin_theta_0 = np.sin(theta_0)
    # Angle at timestep t
    theta_t = theta_0 * alpha
    sin_theta_t = np.sin(theta_t)

    s0 = np.sin(theta_0 - theta_t) / sin_theta_0
    s1 = sin_theta_t / sin_theta_0
    code3 = s0 * code1_copy + s1 * code2_copy
    return code3


def generate_image_from_z(G, z, noise_mode, truncation_psi, device):
    label = torch.zeros([1, G.c_dim], device=device)
    w = G.mapping(z, label, truncation_psi=truncation_psi)
    img = G.synthesis(w, noise_mode=noise_mode, force_fp32=True)
    img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
    img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
    return img


def get_concat_h(im1, im2):
    dst = PIL.Image.new('RGB', (im1.width + im2.width, im1.height))
    dst.paste(im1, (0, 0))
    dst.paste(im2, (im1.width, 0))
    return dst


def make_latent_interp_animation(G, code1, code2, img1, img2, num_interps, noise_mode, save_mid_image, truncation_psi, device, outdir, fps):
    step_size = 1.0/num_interps

    all_imgs = []
    amounts = np.arange(0, 1, step_size)
    for seed_idx, alpha in enumerate(tqdm(amounts)):
        interpolated_latent_code = lerp(code1, code2, alpha)
        image = generate_image_from_z(
            G, interpolated_latent_code, noise_mode, truncation_psi, device)
        interp_latent_image = image.resize((512, 1024))
        if not os.path.exists(os.path.join(outdir, 'img')):
            os.makedirs(os.path.join(outdir, 'img'), exist_ok=True)
        if save_mid_image:
            interp_latent_image.save(f'{outdir}/img/seed{seed_idx:04d}.png')

        frame = get_concat_h(img2, interp_latent_image)
        frame = get_concat_h(frame, img1)
        all_imgs.append(frame)

    save_name = os.path.join(outdir, 'latent_space_traversal.gif')
    all_imgs[0].save(save_name, save_all=True,
                     append_images=all_imgs[1:], duration=1000/fps, loop=0)


"""
Create interpolated images between two given seeds using pretrained network pickle.

Examples:

\b
python interpolation.py --network=pretrained_models/stylegan_human_v2_1024.pkl  --seeds=85,100 --outdir=outputs/inter_gifs
    
"""


@click.command()
@click.pass_context
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--seeds', type=legacy.num_range, help='List of 2 random seeds, e.g. 1,2')
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=0.8, show_default=True)
@click.option('--noise-mode', 'noise_mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True)
@click.option('--outdir', default='outputs/inter_gifs', help='Where to save the output images', type=str, required=True, metavar='DIR')
@click.option('--save_mid_image', default=True, type=bool, help='select True if you want to save all interpolated images')
@click.option('--fps', default=15, help='FPS for GIF', type=int)
@click.option('--num_interps', default=100, help='Number of interpolation images', type=int)
def main(
    ctx: click.Context,
    network_pkl: str,
    seeds: Optional[List[int]],
    truncation_psi: float,
    noise_mode: str,
    outdir: str,
    save_mid_image: bool,
    fps: int,
    num_interps: int
):

    device = torch.device('cuda')
    with dnnlib.util.open_url(network_pkl) as f:
        G = legacy.load_network_pkl(f)['G_ema'].to(device)  # type: ignore

    outdir = os.path.join(outdir)
    if not os.path.exists(outdir):
        os.makedirs(outdir, exist_ok=True)
        os.makedirs(os.path.join(outdir, 'img'), exist_ok=True)

    if len(seeds) > 2:
        print("Receiving more than two seeds, only use the first two.")
        seeds = seeds[0:2]
    elif len(seeds) == 1:
        print('Require two seeds, randomly generate two now.')
        seeds = [seeds[0], random.randint(0, 10000)]

    z1 = torch.from_numpy(np.random.RandomState(
        seeds[0]).randn(1, G.z_dim)).to(device)
    z2 = torch.from_numpy(np.random.RandomState(
        seeds[1]).randn(1, G.z_dim)).to(device)
    img1 = generate_image_from_z(G, z1, noise_mode, truncation_psi, device)
    img2 = generate_image_from_z(G, z2, noise_mode, truncation_psi, device)
    img1.save(f'{outdir}/seed{seeds[0]:04d}.png')
    img2.save(f'{outdir}/seed{seeds[1]:04d}.png')

    make_latent_interp_animation(G, z1, z2, img1, img2, num_interps,
                                 noise_mode, save_mid_image, truncation_psi, device, outdir, fps)


if __name__ == "__main__":
    main()