File size: 1,022 Bytes
251e479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch


def flow_loss_func(flow_preds, flow_gt, valid,

                   gamma=0.9,

                   max_flow=400,

                   **kwargs,

                   ):
    n_predictions = len(flow_preds)
    flow_loss = 0.0

    # exlude invalid pixels and extremely large diplacements
    mag = torch.sum(flow_gt ** 2, dim=1).sqrt()  # [B, H, W]
    valid = (valid >= 0.5) & (mag < max_flow)

    for i in range(n_predictions):
        i_weight = gamma ** (n_predictions - i - 1)

        i_loss = (flow_preds[i] - flow_gt).abs()

        flow_loss += i_weight * (valid[:, None] * i_loss).mean()

    epe = torch.sum((flow_preds[-1] - flow_gt) ** 2, dim=1).sqrt()

    if valid.max() < 0.5:
        pass

    epe = epe.view(-1)[valid.view(-1)]

    metrics = {
        'epe': epe.mean().item(),
        '1px': (epe > 1).float().mean().item(),
        '3px': (epe > 3).float().mean().item(),
        '5px': (epe > 5).float().mean().item(),
    }

    return flow_loss, metrics