File size: 3,583 Bytes
3911a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from diffusers import ( StableDiffusionControlNetPipeline, 
                       ControlNetModel, UniPCMultistepScheduler)

from controlnet_aux import HEDdetector
from PIL import Image
import gradio as gr
import torch

stable_model_list = [
    "runwayml/stable-diffusion-v1-5",
    "stabilityai/stable-diffusion-2",
    "stabilityai/stable-diffusion-2-base",
    "stabilityai/stable-diffusion-2-1",
    "stabilityai/stable-diffusion-2-1-base"
]

stable_inpiant_model_list = [
    "stabilityai/stable-diffusion-2-inpainting",
    "runwayml/stable-diffusion-inpainting"
]

stable_prompt_list = [
        "a photo of a man.",
        "a photo of a girl."
    ]

stable_negative_prompt_list = [
        "bad, ugly",
        "deformed"
    ]


def controlnet_hed(image_path:str):
    hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')

    image = Image.open(image_path)
    image = hed(image)

    controlnet = ControlNetModel.from_pretrained(
        "fusing/stable-diffusion-v1-5-controlnet-hed", 
        torch_dtype=torch.float16
    )
    return controlnet, image


def stable_diffusion_controlnet_hed(
    image_path:str,
    model_path:str,
    prompt:str,
    negative_prompt:str,
    guidance_scale:int,
    num_inference_step:int,
    ):

    controlnet, image = controlnet_hed(image_path=image_path)

    pipe = StableDiffusionControlNetPipeline.from_pretrained(
        pretrained_model_name_or_path=model_path, 
        controlnet=controlnet, 
        safety_checker=None, 
        torch_dtype=torch.float16
    )

    pipe.to("cuda")
    pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
    pipe.enable_xformers_memory_efficient_attention()

    output = pipe(
        prompt = prompt,
        image = image,
        negative_prompt = negative_prompt,
        num_inference_steps = num_inference_step,
        guidance_scale = guidance_scale,
    ).images

    return output[0]

def stable_diffusion_controlnet_hed_app():
    with gr.Tab('Hed'):
        controlnet_hed_image_file = gr.Image(
            type='filepath', 
            label='Image'
        )

        controlnet_hed_model_id = gr.Dropdown(
            choices=stable_model_list, 
            value=stable_model_list[0], 
            label='Stable Model Id'
        )

        controlnet_hed_prompt = gr.Textbox(
            lines=1, 
            value=stable_prompt_list[0], 
            label='Prompt'
        )

        controlnet_hed_negative_prompt = gr.Textbox(
            lines=1, 
            value=stable_negative_prompt_list[0], 
            label='Negative Prompt'
        )

        with gr.Accordion("Advanced Options", open=False):
            controlnet_hed_guidance_scale = gr.Slider(
                minimum=0.1, 
                maximum=15, 
                step=0.1, 
                value=7.5, 
                label='Guidance Scale'
            )

            controlnet_hed_num_inference_step = gr.Slider(
                minimum=1, 
                maximum=100, 
                step=1, 
                value=50, 
                label='Num Inference Step'
            )

        controlnet_hed_predict = gr.Button(value='Generator')
    
    variables = {
        'image_path': controlnet_hed_image_file,
        'model_path': controlnet_hed_model_id,
        'prompt': controlnet_hed_prompt,
        'negative_prompt': controlnet_hed_negative_prompt,
        'guidance_scale': controlnet_hed_guidance_scale,
        'num_inference_step': controlnet_hed_num_inference_step,
        'predict': controlnet_hed_predict
    }

    return variables