File size: 7,433 Bytes
2204ef0
 
9ae63a0
2204ef0
 
 
 
 
 
 
 
 
9ae63a0
 
 
 
 
 
2204ef0
 
 
 
 
 
 
 
 
 
 
9ae63a0
2204ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae63a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2204ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae63a0
 
 
 
 
 
 
 
 
 
 
 
 
2204ef0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from utils.image2image import stable_diffusion_img2img
from utils.text2image import stable_diffusion_text2img
from utils.inpaint import stable_diffusion_inpaint
import gradio as gr

stable_model_list = [
    "runwayml/stable-diffusion-v1-5",
    "stabilityai/stable-diffusion-2",
    "stabilityai/stable-diffusion-2-base",
    "stabilityai/stable-diffusion-2-1",
    "stabilityai/stable-diffusion-2-1-base"
]

stable_inpiant_model_list = [
    "stabilityai/stable-diffusion-2-inpainting",
    "runwayml/stable-diffusion-inpainting"
]

stable_prompt_list = [
        "a photo of a man.",
        "a photo of a girl."
    ]

stable_negative_prompt_list = [
        "bad, ugly",
        "deformed"
    ]
app = gr.Blocks()
with app:
    gr.Markdown("# **<h2 align='center'>Stable Diffusion + ControlNet WebUI<h2>**")
    gr.Markdown(
        """
        <h5 style='text-align: center'>
        Follow me for more! 
        <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>
        </h5>
        """
    )
    with gr.Row():
        with gr.Column():
            with gr.Tab('Text2Image'):
                text2image_model_id = gr.Dropdown(
                    choices=stable_model_list, 
                    value=stable_model_list[0], 
                    label='Text-Image Model Id'
                )

                text2image_prompt = gr.Textbox(
                    lines=1, 
                    value=stable_prompt_list[0], 
                    label='Prompt'
                )

                text2image_negative_prompt = gr.Textbox(
                    lines=1, 
                    value=stable_negative_prompt_list[0], 
                    label='Negative Prompt'
                )

                with gr.Accordion("Advanced Options", open=False):
                    text2image_guidance_scale = gr.Slider(
                        minimum=0.1, 
                        maximum=15, 
                        step=0.1, 
                        value=7.5, 
                        label='Guidance Scale'
                    )

                    text2image_num_inference_step = gr.Slider(
                        minimum=1, 
                        maximum=100, 
                        step=1, 
                        value=50, 
                        label='Num Inference Step'
                    )

                    text2image_height = gr.Slider(
                        minimum=128, 
                        maximum=1280, 
                        step=32, 
                        value=512, 
                        label='Tile Height'
                    )

                    text2image_width = gr.Slider(
                        minimum=128, 
                        maximum=1280, 
                        step=32, 
                        value=768, 
                        label='Tile Height'
                    )

                text2image_predict = gr.Button(value='Generator')


            with gr.Tab('Image2Image'):
                image2image2_image_file = gr.Image(label='Image')

                image2image_model_id = gr.Dropdown(
                    choices=stable_model_list, 
                    value=stable_model_list[0], 
                    label='Image-Image Model Id'
                )

                image2image_prompt = gr.Textbox(
                    lines=1, 
                    value=stable_prompt_list[0], 
                    label='Prompt'
                )

                image2image_negative_prompt = gr.Textbox(
                    lines=1, 
                    value=stable_negative_prompt_list[0], 
                    label='Negative Prompt'
                )

                with gr.Accordion("Advanced Options", open=False):
                    image2image_guidance_scale = gr.Slider(
                        minimum=0.1, 
                        maximum=15, 
                        step=0.1, 
                        value=7.5, 
                        label='Guidance Scale'
                    )

                    image2image_num_inference_step = gr.Slider(
                        minimum=1, 
                        maximum=100, 
                        step=1, 
                        value=50, 
                        label='Num Inference Step'
                    )

                image2image_predict = gr.Button(value='Generator')

            with gr.Tab('Inpaint'):
                inpaint_image_file = gr.Image(
                    source="upload", 
                    type="numpy", 
                    tool="sketch", 
                    elem_id="source_container"
                )

                inpaint_model_id = gr.Dropdown(
                    choices=stable_inpiant_model_list, 
                    value=stable_inpiant_model_list[0], 
                    label='Inpaint Model Id'
                )

                inpaint_prompt = gr.Textbox(
                    lines=1, 
                    value=stable_prompt_list[0], 
                    label='Prompt'
                )

                inpaint_negative_prompt = gr.Textbox(
                    lines=1, 
                    value=stable_negative_prompt_list[0], 
                    label='Negative Prompt'
                )

                with gr.Accordion("Advanced Options", open=False):
                    inpaint_guidance_scale = gr.Slider(
                        minimum=0.1, 
                        maximum=15, 
                        step=0.1, 
                        value=7.5, 
                        label='Guidance Scale'
                    )

                    inpaint_num_inference_step = gr.Slider(
                        minimum=1, 
                        maximum=100, 
                        step=1, 
                        value=50, 
                        label='Num Inference Step'
                    )

                inpaint_predict = gr.Button(value='Generator')

    with gr.Tab('Generator'):
        with gr.Column():
            output_image = gr.Image(label='Image')
            
        text2image_predict.click(
            fn = stable_diffusion_text2img,
            inputs = [
                text2image_model_id,
                text2image_prompt, 
                text2image_negative_prompt, 
                text2image_guidance_scale,
                text2image_num_inference_step, 
                text2image_height,
                text2image_width,
            ],
            outputs = [output_image],
        )  

        image2image_predict.click(
            fn = stable_diffusion_img2img,
            inputs = [
                image2image2_image_file,
                image2image_model_id, 
                image2image_prompt, 
                image2image_negative_prompt,
                image2image_guidance_scale, 
                image2image_num_inference_step,
            ],
            outputs = [output_image],
        )  

        inpaint_predict.click(
            fn = stable_diffusion_inpaint,
            inputs = [
                inpaint_image_file,
                inpaint_model_id, 
                inpaint_prompt, 
                inpaint_negative_prompt,
                inpaint_guidance_scale, 
                inpaint_num_inference_step,
            ],
            outputs = [output_image],
        )  

app.launch()