Spaces:
Runtime error
Runtime error
File size: 8,032 Bytes
9a2636b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import streamlit as st
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
import os
# Create 'charts' folder if it doesn't exist
if not os.path.exists('charts'):
os.makedirs('charts')
# Function to save and show charts
def save_and_show_chart(fig, filename):
filepath = os.path.join('charts', filename)
fig.savefig(filepath)
st.image(filepath)
st.set_page_config(
page_title="Breast Cancer Analysis",
page_icon=":female-doctor:",
layout="wide",
initial_sidebar_state="expanded"
)
# Set page title
st.title('Breast Cancer Diagnosis - Machine Learning Model Evaluation')
st.divider()
# Breast Cancer Wisconsin Dataset Information
st.header("Breast Cancer Wisconsin (Diagnostic) Data Set")
st.write("""
The **Breast Cancer Wisconsin (Diagnostic) Data Set** is a collection of clinical breast cancer diagnostic data. The data includes features that describe characteristics of cell nuclei from breast cancer biopsies, which are used to predict whether a tumor is benign or malignant.
Key features in the dataset include:
- **Radius:** The average distance from the center to points on the perimeter
- **Texture:** The standard deviation of grayscale values
- **Perimeter, Area, Smoothness:** Other morphological features describing cell shapes
The dataset is commonly used for classification tasks in machine learning to predict the likelihood of breast cancer malignancy.
""")
# Footer or additional information
st.write("This application aims to provide insights into breast cancer through data analysis and prediction based on the Breast Cancer Wisconsin dataset.")
st.divider()
# Data Preparation and Import Libraries
st.header('Data Preparation')
data = pd.read_csv('./data/data.csv')
st.subheader('Data Preview (show only first 5 rows)')
st.write(data.head())
st.subheader('Data Shape')
st.success(f"There are {data.shape[0]} rows and {data.shape[1]} columns in this dataset.")
# st.subheader('Data Info')
# st.table(data.info())
st.divider()
st.subheader('Checking Duplicates and Missing Values')
st.success(f"There are {data.duplicated().sum()} duplicate rows in this dataset.")
st.write(data.isna().sum())
st.divider()
st.subheader('Dropping Irrelevant Columns')
data = data.drop(['id', 'Unnamed: 32'], axis=1)
st.success("**id** and **Unnamed** columned were deleted because these variables can not be used for classification.")
st.divider()
st.subheader('Renaming Columns')
st.write("In the dataset, the 'diagnosis' variable was renamed as 'target,' where the value 'M' (Malignant) was renamed to 1 and 'B' (Benign) was renamed to 0 for easier modeling.")
data = data.rename(columns={'diagnosis': 'target'})
df = data.copy()
data.target.replace({'M': '1', 'B': '0'}, inplace=True)
data.target = data.target.astype('float64')
st.write(data.head())
st.divider()
# Analysis & EDA
st.header('Analysis & EDA')
st.subheader('Target Value Counts')
y = df.target
ax = sns.countplot(y,label="Count") # M = 212, B = 357
B, M = y.value_counts()
st.write('Number of Benign (0): ',B)
st.write('Number of Malignant (1): ',M)
# Visualizing target data
st.subheader('Bar Plot of Target Values')
fig, ax = plt.subplots(figsize=(8, 6))
# data['target'].value_counts().plot(kind='bar', edgecolor='black', color=['lightsteelblue', 'navajowhite'], ax=ax)
sns.countplot(y, label="Count", ax=ax)
ax.set_title("Target Distribution")
# st.pyplot(fig)
save_and_show_chart(fig, 'target_count.png')
st.divider()
# Correlation Analysis
st.subheader('Correlation Analysis')
cor = data.corr()
st.write(cor)
st.divider()
st.subheader('Correlation Heatmap')
fig, ax = plt.subplots(figsize=(25, 23))
sns.heatmap(cor, annot=True, linewidths=0.3, linecolor="black", fmt=".2f", ax=ax)
ax.set_title('Correlation Heatmap')
# st.pyplot(fig)
save_and_show_chart(fig, 'correlation_heatmap.png')
st.divider()
st.subheader('Features with Correlation > 0.75')
threshold = 0.75
filtre = np.abs(cor["target"]) > threshold
corr_features = cor.columns[filtre].tolist()
cluster_map = sns.clustermap(
data[corr_features].corr(),
annot=True,
fmt=".2f",
figsize=(10, 8) # Adjust the figsize here
)
plt.savefig('charts/clustermap_high_correlation.png')
st.image('charts/clustermap_high_correlation.png')
# st.pyplot(cluster_map.fig)
st.divider()
# Pairplot for high-correlation features
st.subheader('Pairplot for Features with High Correlation')
fig, ax = plt.subplots(figsize=(8, 6))
pairplot = sns.pairplot(data[corr_features], diag_kind="kde", markers="*", hue="target")
plt.savefig('charts/pairplot_high_correlation.png')
st.image('charts/pairplot_high_correlation.png')
# st.pyplot(pairplot)
st.divider()
# Machine Learning Model Evaluation
st.header('Machine Learning Model Evaluation')
# Splitting the data
x = data.drop('target', axis=1)
y = data['target']
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.30, random_state=101)
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
algorithm = ['KNeighborsClassifier', 'RandomForestClassifier', 'DecisionTreeClassifier', 'GaussianNB', 'LogisticRegression']
Accuracy = []
def evaluate_model(model):
model.fit(x_train, y_train)
pred = model.predict(x_test)
acc = accuracy_score(y_test, pred)
Accuracy.append(acc)
# Confusion Matrix
cm = confusion_matrix(y_test, pred)
st.subheader(f'Confusion Matrix for {model.__class__.__name__}')
fig, ax = plt.subplots()
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', ax=ax)
save_and_show_chart(fig, f'{model}_confusion_matrix.png')
# st.pyplot(fig)
# Normalized Confusion Matrix
cm_norm = confusion_matrix(y_test, pred, normalize='true')
st.subheader(f'Normalized Confusion Matrix for {model.__class__.__name__}')
fig, ax = plt.subplots()
sns.heatmap(cm_norm, annot=True, cmap='Blues', ax=ax)
save_and_show_chart(fig, f'{model}_normalized_confusion_matrix.png')
# st.pyplot(fig)
# Classification Report
st.subheader(f'Classification Report for {model.__class__.__name__}')
st.text(classification_report(y_test, pred))
st.write(f"Accuracy: {acc}")
# Evaluating different models
st.subheader('01. KNeighborsClassifier Evaluation')
model_knn = KNeighborsClassifier(n_neighbors=2)
evaluate_model(model_knn)
st.divider()
st.subheader('02. RandomForestClassifier Evaluation')
model_rf = RandomForestClassifier(n_estimators=100, random_state=0)
evaluate_model(model_rf)
st.divider()
st.subheader('03. DecisionTreeClassifier Evaluation')
model_dt = DecisionTreeClassifier(random_state=42)
evaluate_model(model_dt)
st.divider()
st.subheader('04. GaussianNB Evaluation')
model_nb = GaussianNB()
evaluate_model(model_nb)
st.divider()
st.subheader('05. LogisticRegression Evaluation')
model_lr = LogisticRegression()
evaluate_model(model_lr)
st.divider()
# Final Accuracy Plot
st.header('Model Accuracy Comparison')
df = pd.DataFrame({'Algorithm': algorithm, 'Accuracy': Accuracy})
fig, ax = plt.subplots(figsize=(20, 10))
ax.plot(df.Algorithm, df.Accuracy, label='Accuracy', lw=5, color='peru', marker='o', markersize=15)
ax.legend(fontsize=15)
ax.set_xlabel('\nModel', fontsize=20)
ax.set_ylabel('Accuracy\n', fontsize=20)
save_and_show_chart(fig, 'model_Accuracy.png')
# st.pyplot(fig)
# End of Streamlit app
|