File size: 29,855 Bytes
ec19a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f6b4f2
 
 
ec19a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f6b4f2
ec19a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f6b4f2
 
 
 
 
 
 
 
ec19a5f
 
 
4f6b4f2
ec19a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f6b4f2
 
 
 
ec19a5f
 
 
 
4f6b4f2
 
ec19a5f
 
 
 
 
4f6b4f2
 
 
 
ec19a5f
 
 
 
4f6b4f2
 
ec19a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f6b4f2
 
 
 
 
 
 
 
 
 
ec19a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f6b4f2
 
ec19a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f6b4f2
ec19a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f6b4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec19a5f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
#!/usr/bin/env python3
"""
SmolAgent Test Client

A Gradio-based test client for the BasicSmolAgent that:
1. Fetches random questions from the evaluation API
2. Executes the agent with detailed tracking
3. Displays comprehensive execution information
4. Supports custom question testing
5. Tests against evaluation questions from questions_evaluated.py

Usage: python agent_test_client.py
"""

import gradio as gr
import requests
from agent import BasicSmolAgent
import traceback
import time
from contextlib import redirect_stdout, redirect_stderr
import io
import pandas as pd
from questions_evaluated import questions
import json
import sys
from typing import Optional, Dict, Any, List

# Configuration
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

class AgentExecutionTracker:
    """Tracks and logs agent execution with detailed information"""
    
    def __init__(self):
        self.reset()
    
    def reset(self):
        """Reset tracking for new execution"""
        self.logs = []
        self.start_time = ""
        self.end_time = ""
        self.question = ""
        self.agent_response = ""
        self.final_answer = ""
        self.captured_stdout = ""
        self.captured_stderr = ""
    
    def log(self, level, message):
        """Add a log entry with timestamp"""
        timestamp = time.strftime("%H:%M:%S")
        self.logs.append(f"[{timestamp}] {level}: {message}")
    
    def get_formatted_log(self):
        """Get comprehensive formatted execution log"""
        lines = [
            "πŸ€– AGENT EXECUTION LOG",
            "=" * 60,
            f"πŸ“ Question: {self.question}",
            f"⏰ Started: {self.start_time}",
            f"⏱️ Ended: {self.end_time}",
            "",
            "πŸ“‹ EXECUTION STEPS:",
            "-" * 40
        ]
        
        # Add all log entries
        for log_entry in self.logs:
            lines.append(log_entry)
        
        # Add captured outputs if any
        if self.captured_stdout.strip():
            lines.extend([
                "",
                "πŸ“€ CAPTURED STDOUT:",
                "-" * 30,
                self.captured_stdout,
                "-" * 30
            ])
        
        if self.captured_stderr.strip():
            lines.extend([
                "",
                "⚠️ CAPTURED STDERR:",
                "-" * 30,
                self.captured_stderr,
                "-" * 30
            ])
        
        # Add final results
        lines.extend([
            "",
            "🎯 RESULTS:",
            "-" * 20,
            f"Agent Response Length: {len(self.agent_response)} characters",
        ])
        
        if self.final_answer:
            lines.append(f"Final Answer: {self.final_answer}")
        
        return "\n".join(lines)

class SmolAgentTester:
    """Main tester class that handles agent execution and API calls"""
    
    def __init__(self):
        self.agent = None
        self.tracker = AgentExecutionTracker()
        self.api_url = DEFAULT_API_URL
    
    def _initialize_agent(self):
        """Initialize the BasicSmolAgent if not already done"""
        if self.agent is None:
            try:
                self.tracker.log("INIT", "Initializing BasicSmolAgent...")
                self.agent = BasicSmolAgent()
                self.tracker.log("INIT", "βœ… BasicSmolAgent initialized successfully")
                return True
            except Exception as e:
                self.tracker.log("ERROR", f"Failed to initialize agent: {str(e)}")
                return False
        return True
    
    def fetch_random_question(self):
        """Fetch a random question from the evaluation API"""
        try:
            self.tracker.log("API", "Fetching random question from evaluation API...")
            
            response = requests.get(f"{self.api_url}/random-question", timeout=15)
            response.raise_for_status()
            
            question_data = response.json()
            task_id = question_data.get("task_id", "Unknown")
            question_text = question_data.get("question", "No question available")
            
            self.tracker.log("API", f"βœ… Successfully fetched question (Task ID: {task_id})")
            
            return question_data
            
        except requests.exceptions.Timeout:
            self.tracker.log("ERROR", "Request timeout - API may be slow or unavailable")
            return None
        except requests.exceptions.ConnectionError:
            self.tracker.log("ERROR", "Connection error - Check internet connection")
            return None
        except requests.exceptions.HTTPError as e:
            self.tracker.log("ERROR", f"HTTP error {e.response.status_code} - API may be unavailable")
            return None
        except Exception as e:
            self.tracker.log("ERROR", f"Unexpected error fetching question: {str(e)}")
            return None
    
    def execute_agent(self, question):
        """Execute the agent with comprehensive tracking"""
        # Reset tracker for new execution
        self.tracker.reset()
        self.tracker.question = question
        self.tracker.start_time = time.strftime("%H:%M:%S")
        
        try:
            # Initialize agent if needed
            if not self._initialize_agent():
                self.tracker.end_time = time.strftime("%H:%M:%S")
                return "Failed to initialize agent"
            
            self.tracker.log("EXEC", "Starting agent execution...")
            self.tracker.log("QUESTION", f"Processing: {question[:100]}{'...' if len(question) > 100 else ''}")
            
            # Capture stdout and stderr during execution
            stdout_buffer = io.StringIO()
            stderr_buffer = io.StringIO()
            
            with redirect_stdout(stdout_buffer), redirect_stderr(stderr_buffer):
                result = self.agent(question)
            
            # Store captured outputs
            self.tracker.captured_stdout = stdout_buffer.getvalue()
            self.tracker.captured_stderr = stderr_buffer.getvalue()
            
            self.tracker.log("EXEC", "βœ… Agent execution completed successfully")
            
            # FIXED: Handle non-string results from agent
            original_type = type(result).__name__
            if isinstance(result, str):
                result_str = result
                self.tracker.log("RESPONSE", f"Agent returned string ({len(result_str)} characters)")
            else:
                result_str = str(result)
                self.tracker.log("RESPONSE", f"Agent returned {original_type}: {result}")
                self.tracker.log("RESPONSE", f"Converted to string ({len(result_str)} characters)")

            # Extract final answer if present in string version
            if "FINAL ANSWER:" in result_str:
                final_answer = result_str.split("FINAL ANSWER:")[-1].strip()
                self.tracker.final_answer = final_answer
                self.tracker.log("ANSWER", f"Extracted final answer: {final_answer[:50]}{'...' if len(final_answer) > 50 else ''}")
            else:
                # If no "FINAL ANSWER:" format and original was not a string, use the converted string
                if not isinstance(result, str):
                    self.tracker.final_answer = result_str
                    self.tracker.log("ANSWER", f"No FINAL ANSWER format, using converted {original_type}: {result_str}")
                else:
                    self.tracker.final_answer = "No explicit final answer found"
                    self.tracker.log("ANSWER", "No explicit FINAL ANSWER format detected")

            self.tracker.agent_response = result_str
            self.tracker.end_time = time.strftime("%H:%M:%S")
            
            return result_str
            
        except Exception as e:
            error_msg = f"Agent execution failed: {str(e)}"
            self.tracker.log("ERROR", error_msg)
            self.tracker.log("ERROR", f"Traceback: {traceback.format_exc()}")
            self.tracker.end_time = time.strftime("%H:%M:%S")
            return f"ERROR: {error_msg}"

# Global tester instance
tester = SmolAgentTester()

def test_random_question():
    """Handle random question testing"""
    try:
        # Fetch random question
        question_data = tester.fetch_random_question()
        
        if not question_data:
            return (
                "❌ Failed to fetch random question from API", 
                "Please check your internet connection and try again.\nThe evaluation API might be temporarily unavailable.",
                "No response available"
            )
        
        question_text = question_data.get("question", "No question text available")
        task_id = question_data.get("task_id", "Unknown")
        
        # Execute agent
        agent_response = tester.execute_agent(question_text)
        
        # Format outputs
        question_info = f"πŸ“‹ Task ID: {task_id}\n\nπŸ“ Question:\n{question_text}"
        execution_log = tester.tracker.get_formatted_log()
        
        result_summary = f"πŸ€– Agent Response:\n{agent_response}\n\n"
        if tester.tracker.final_answer:
            result_summary += f"🎯 Final Answer: {tester.tracker.final_answer}"
        
        return question_info, execution_log, result_summary
        
    except Exception as e:
        error_msg = f"Unexpected error in random question test: {str(e)}\n{traceback.format_exc()}"
        return f"❌ Error: {error_msg}", "", ""

def test_custom_question(custom_question):
    """Handle custom question testing"""
    if not custom_question.strip():
        return "❌ Please enter a question to test", "", ""
    
    try:
        # Execute agent with custom question
        agent_response = tester.execute_agent(custom_question.strip())
        
        # Format outputs
        question_info = f"πŸ“ Custom Question:\n{custom_question.strip()}"
        execution_log = tester.tracker.get_formatted_log()
        
        result_summary = f"πŸ€– Agent Response:\n{agent_response}\n\n"
        if tester.tracker.final_answer:
            result_summary += f"🎯 Final Answer: {tester.tracker.final_answer}"
        
        return question_info, execution_log, result_summary
        
    except Exception as e:
        error_msg = f"Unexpected error in custom question test: {str(e)}\n{traceback.format_exc()}"
        return f"❌ Error: {error_msg}", "", ""

def get_evaluation_questions():
    """Get list of evaluation questions for dropdown"""
    question_choices = []
    for i, q in enumerate(questions):
        task_id = q.get("task_id", "Unknown")
        question_text = q.get("question", "No question")
        level = q.get("Level", "Unknown")
        
        # Truncate long questions for display
        display_text = question_text[:100] + "..." if len(question_text) > 100 else question_text
        label = f"[Level {level}] {task_id[:8]}... - {display_text}"
        
        question_choices.append((label, i))
    
    return question_choices

def test_evaluation_question(question_index):
    """Handle evaluation question testing"""
    if question_index is None:
        return "❌ Please select a question to test", "", "", ""
    
    try:
        selected_question = questions[question_index]
        question_text = selected_question.get("question", "No question text")
        task_id = selected_question.get("task_id", "Unknown")
        level = selected_question.get("Level", "Unknown")
        file_name = selected_question.get("file_name", "")
        
        # Execute agent
        agent_response = tester.execute_agent(question_text)
        
        # Format outputs
        question_info = f"πŸ“‹ Task ID: {task_id}\nπŸ“Š Level: {level}\nπŸ“Ž File: {file_name if file_name else 'None'}\n\nπŸ“ Question:\n{question_text}"
        execution_log = tester.tracker.get_formatted_log()
        
        result_summary = f"πŸ€– Agent Response:\n{agent_response}\n\n"
        if tester.tracker.final_answer:
            result_summary += f"🎯 Final Answer: {tester.tracker.final_answer}"
        
        # Get the correct answer
        correct_answer = get_correct_answer(task_id)
        if correct_answer:
            correct_answer_display = f"βœ… **Correct Answer:**\n{correct_answer}\n\nπŸ“‹ **Task ID:** {task_id}\nπŸ“Š **Level:** {level}"
        else:
            correct_answer_display = f"❓ **Correct Answer:**\nNot found in metadata\n\nπŸ“‹ **Task ID:** {task_id}\nπŸ“Š **Level:** {level}"
        
        return question_info, execution_log, result_summary, correct_answer_display
        
    except Exception as e:
        error_msg = f"Unexpected error in evaluation question test: {str(e)}\n{traceback.format_exc()}"
        return f"❌ Error: {error_msg}", "", "", ""

def test_all_evaluation_questions():
    """Run all evaluation questions and return results"""
    try:
        results = []
        total_questions = len(questions)
        
        progress_info = f"πŸ”„ Running {total_questions} evaluation questions...\n\n"
        
        for i, question_data in enumerate(questions):
            question_text = question_data.get("question", "No question text")
            task_id = question_data.get("task_id", "Unknown")
            level = question_data.get("Level", "Unknown")
            
            progress_info += f"Processing question {i+1}/{total_questions}: {task_id[:8]}...\n"
            
            try:
                # Execute agent
                agent_response = tester.execute_agent(question_text)
                
                # Extract final answer
                final_answer = tester.tracker.final_answer if tester.tracker.final_answer else "No answer extracted"
                
                # Get correct answer
                correct_answer = get_correct_answer(task_id)
                correct_answer_display = correct_answer if correct_answer else "Not found"
                
                results.append({
                    "Task ID": task_id,
                    "Level": level,
                    "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
                    "Agent Answer": final_answer,
                    "Correct Answer": correct_answer_display,
                    "Response Length": len(agent_response),
                    "Status": "Success"
                })
                
            except Exception as e:
                # Get correct answer even if agent failed
                correct_answer = get_correct_answer(task_id)
                correct_answer_display = correct_answer if correct_answer else "Not found"
                
                results.append({
                    "Task ID": task_id,
                    "Level": level,
                    "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
                    "Agent Answer": f"ERROR: {str(e)}",
                    "Correct Answer": correct_answer_display,
                    "Response Length": 0,
                    "Status": "Failed"
                })
        
        # Create DataFrame for results
        results_df = pd.DataFrame(results)
        
        # Summary statistics
        success_count = len([r for r in results if r["Status"] == "Success"])
        failure_count = total_questions - success_count
        
        summary = f"""
        βœ… EVALUATION COMPLETE
        
        πŸ“Š Summary:
        - Total Questions: {total_questions}
        - Successful: {success_count}
        - Failed: {failure_count}
        - Success Rate: {(success_count/total_questions)*100:.1f}%
        """
        
        return summary, results_df, "All evaluation questions processed!"
        
    except Exception as e:
        error_msg = f"Error running all evaluation questions: {str(e)}\n{traceback.format_exc()}"
        return f"❌ Error: {error_msg}", pd.DataFrame(), ""

def create_interface():
    """Create the main Gradio interface"""
    
    # Custom CSS for better styling
    css = """
    .gradio-container {
        max-width: 1200px !important;
    }
    .tab-nav {
        font-size: 16px !important;
    }
    """
    
    with gr.Blocks(
        title="SmolAgent Test Client", 
        css=css,
        theme=gr.themes.Base(
            primary_hue="blue",
            secondary_hue="gray"
        )
    ) as interface:
        
        # Header
        gr.Markdown("""
        # πŸ§ͺ SmolAgent Test Client
        
        **Interactive testing environment for the BasicSmolAgent**
        
        This tool allows you to thoroughly test the agent's capabilities with detailed execution tracking.
        You can fetch random questions from the evaluation API, test with custom questions, or run specific evaluation questions.
        """)
        
        # Main tabs
        with gr.Tabs():
            # Random Question Tab
            with gr.TabItem("🎲 Random Question Test", elem_id="random-tab"):
                gr.Markdown("### Fetch and test a random question from the evaluation API")
                gr.Markdown("Click the button below to fetch a random question and run the agent on it.")
                
                random_btn = gr.Button(
                    "🎲 Fetch Random Question & Execute Agent", 
                    variant="primary", 
                    size="lg",
                    scale=1
                )
                
                # Output sections
                with gr.Row():
                    with gr.Column(scale=1):
                        question_display = gr.Textbox(
                            label="πŸ“‹ Question Information",
                            lines=6,
                            max_lines=10,
                            interactive=False,
                            show_copy_button=True
                        )
                    
                    with gr.Column(scale=1):
                        result_display = gr.Textbox(
                            label="🎯 Agent Response & Final Answer",
                            lines=6,
                            max_lines=10,
                            interactive=False,
                            show_copy_button=True
                        )
                
                execution_log_display = gr.Textbox(
                    label="πŸ” Detailed Execution Log",
                    lines=20,
                    max_lines=30,
                    interactive=False,
                    show_copy_button=True,
                    placeholder="Execution log will appear here after running the agent..."
                )
                
                # Wire up the random question functionality
                random_btn.click(
                    fn=test_random_question,
                    inputs=[],
                    outputs=[question_display, execution_log_display, result_display]
                )
            
            # Custom Question Tab
            with gr.TabItem("✏️ Custom Question Test", elem_id="custom-tab"):
                gr.Markdown("### Test the agent with your own custom question")
                gr.Markdown("Enter any question you'd like to test the agent with.")
                
                custom_input = gr.Textbox(
                    label="πŸ“ Your Question",
                    lines=3,
                    max_lines=5,
                    placeholder="Enter your question here...\n\nExample: What is the square root of 144?",
                    show_copy_button=True
                )
                
                custom_btn = gr.Button(
                    "πŸš€ Execute Agent on Custom Question", 
                    variant="secondary", 
                    size="lg"
                )
                
                # Output sections for custom questions
                with gr.Row():
                    with gr.Column(scale=1):
                        custom_question_display = gr.Textbox(
                            label="πŸ“‹ Question Information",
                            lines=4,
                            max_lines=8,
                            interactive=False,
                            show_copy_button=True
                        )
                    
                    with gr.Column(scale=1):
                        custom_result_display = gr.Textbox(
                            label="🎯 Agent Response & Final Answer",
                            lines=4,
                            max_lines=8,
                            interactive=False,
                            show_copy_button=True
                        )
                
                custom_execution_log_display = gr.Textbox(
                    label="πŸ” Detailed Execution Log",
                    lines=20,
                    max_lines=30,
                    interactive=False,
                    show_copy_button=True,
                    placeholder="Execution log will appear here after running the agent..."
                )
                
                # Wire up the custom question functionality
                custom_btn.click(
                    fn=test_custom_question,
                    inputs=[custom_input],
                    outputs=[custom_question_display, custom_execution_log_display, custom_result_display]
                )
            
            # Evaluation Questions Tab
            with gr.TabItem("πŸ“Š Evaluation Questions", elem_id="eval-tab"):
                gr.Markdown("### Test with specific evaluation questions")
                gr.Markdown(f"Select from {len(questions)} evaluation questions or run all of them.")
                
                with gr.Row():
                    with gr.Column(scale=2):
                        question_dropdown = gr.Dropdown(
                            choices=get_evaluation_questions(),
                            label="πŸ“ Select Evaluation Question",
                            value=None
                        )
                    
                    with gr.Column(scale=1):
                        eval_single_btn = gr.Button(
                            "πŸš€ Run Selected Question", 
                            variant="secondary", 
                            size="lg"
                        )
                
                eval_all_btn = gr.Button(
                    "πŸ”„ Run ALL Evaluation Questions", 
                    variant="primary", 
                    size="lg"
                )
                
                gr.Markdown("⚠️ **Warning**: Running all questions may take a long time!")
                
                # Single question results
                with gr.Row():
                    with gr.Column(scale=1):
                        eval_question_display = gr.Textbox(
                            label="πŸ“‹ Question Information",
                            lines=6,
                            max_lines=10,
                            interactive=False,
                            show_copy_button=True
                        )
                    
                    with gr.Column(scale=1):
                        eval_result_display = gr.Textbox(
                            label="🎯 Agent Response & Final Answer",
                            lines=6,
                            max_lines=10,
                            interactive=False,
                            show_copy_button=True
                        )
                    
                    with gr.Column(scale=1):
                        eval_correct_answer_display = gr.Textbox(
                            label="βœ… Correct Answer",
                            lines=6,
                            max_lines=10,
                            interactive=False,
                            show_copy_button=True,
                            placeholder="Correct answer will appear here..."
                        )
                
                eval_execution_log_display = gr.Textbox(
                    label="πŸ” Detailed Execution Log",
                    lines=15,
                    max_lines=25,
                    interactive=False,
                    show_copy_button=True,
                    placeholder="Execution log will appear here after running a question..."
                )
                
                # All questions results
                gr.Markdown("### πŸ“Š Batch Results")
                
                batch_summary_display = gr.Textbox(
                    label="πŸ“ˆ Batch Summary",
                    lines=8,
                    interactive=False,
                    show_copy_button=True,
                    placeholder="Summary will appear here after running all questions..."
                )
                
                batch_results_display = gr.DataFrame(
                    label="πŸ“‹ Detailed Results Table",
                    headers=["Task ID", "Level", "Question", "Agent Answer", "Correct Answer", "Response Length", "Status"],
                    datatype=["str", "str", "str", "str", "str", "number", "str"],
                    interactive=False,
                    wrap=True
                )
                
                batch_status_display = gr.Textbox(
                    label="πŸ”„ Status",
                    lines=2,
                    interactive=False,
                    placeholder="Status updates will appear here..."
                )
                
                # Wire up evaluation question functionality
                eval_single_btn.click(
                    fn=test_evaluation_question,
                    inputs=[question_dropdown],
                    outputs=[eval_question_display, eval_execution_log_display, eval_result_display, eval_correct_answer_display]
                )
                
                eval_all_btn.click(
                    fn=test_all_evaluation_questions,
                    inputs=[],
                    outputs=[batch_summary_display, batch_results_display, batch_status_display]
                )
        
        # Footer information
        gr.Markdown("---")
        gr.Markdown("""
        ### πŸ“š Features & Information
        
        **πŸ” Execution Tracking:**
        - Comprehensive step-by-step logging with timestamps
        - Capture of stdout/stderr during agent execution
        - Detailed error reporting and stack traces
        - Performance timing information
        
        **🎯 Response Analysis:**
        - Full agent response display
        - Automatic final answer extraction
        - Response length and format analysis
        
        **⚑ Testing Capabilities:**
        - Random questions from the evaluation API endpoint
        - Custom question testing with any input
        - Individual evaluation question testing
        - Batch processing of all evaluation questions
        - Copy-friendly logs for external analysis
        - Real-time execution monitoring
        
        **πŸ”§ Technical Details:**
        - Uses the existing BasicSmolAgent from agent.py
        - Connects to: `https://agents-course-unit4-scoring.hf.space/random-question`
        - Processes questions from questions_evaluated.py
        - Captures all agent tool usage and reasoning steps
        - Provides detailed execution diagnostics
        """)
        
        gr.Markdown("""
        ### πŸš€ Quick Start Guide
        
        1. **Random Questions**: Click "Fetch Random Question & Execute Agent" to test with API questions
        2. **Custom Questions**: Enter your own question and click "Execute Agent on Custom Question"
        3. **Evaluation Questions**: Select a specific evaluation question or run all of them
        4. **Review Results**: Check execution logs for detailed insights into agent processing
        5. **Batch Analysis**: Use the "Run ALL" feature to get comprehensive performance metrics
        """)
    
    return interface

def main():
    """Main function to launch the test client"""
    print("πŸš€ Starting SmolAgent Test Client...")
    print("πŸ“‘ API Endpoint:", DEFAULT_API_URL)
    print("πŸ€– Agent Type: BasicSmolAgent")
    print(f"πŸ“Š Evaluation Questions: {len(questions)} loaded")
    print("-" * 50)
    
    # Create and launch interface
    interface = create_interface()
    interface.launch(
        debug=True,
        share=False,
        show_error=True,
        server_name="0.0.0.0",  # Allow external connections
        server_port=7860
    )

def load_metadata() -> Dict[str, str]:
    """Load metadata from metadata.jsonl and return a mapping of task_id to final answer"""
    metadata = {}
    try:
        with open('metadata.jsonl', 'r', encoding='utf-8') as f:
            for line in f:
                line = line.strip()
                if line:
                    try:
                        data = json.loads(line)
                        task_id = data.get('task_id')
                        final_answer = data.get('Final answer')
                        if task_id and final_answer is not None:
                            metadata[task_id] = str(final_answer)
                    except json.JSONDecodeError as e:
                        print(f"Warning: Could not parse JSON line: {line[:100]}...")
                        continue
    except FileNotFoundError:
        print("Warning: metadata.jsonl file not found")
    except Exception as e:
        print(f"Warning: Error loading metadata: {e}")
    
    return metadata

def get_correct_answer(task_id: str) -> Optional[str]:
    """Get the correct answer for a given task_id"""
    metadata = load_metadata()
    return metadata.get(task_id)

if __name__ == "__main__":
    main()