Spaces:
Running
Running
File size: 11,564 Bytes
fe02c49 eec4fa3 fe02c49 0c7be31 fe02c49 706408b ea7bc2f 706408b 0c7be31 ea7bc2f 706408b 0c7be31 706408b fe02c49 0c7be31 706408b 77364cc 0c7be31 706408b 4661832 706408b 5d580b9 706408b ea7bc2f 706408b 0c7be31 706408b 0c7be31 706408b 0c7be31 706408b 150301e b929bff 0c7be31 706408b ea7bc2f 706408b ea7bc2f 706408b 0c7be31 706408b 0c7be31 706408b fe02c49 efcd81a fe02c49 efcd81a fe02c49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
"""
File: model_translation.py
Description:
Loading models for text translations
Author: Didier Guillevic
Date: 2024-03-16
"""
import spaces
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
from transformers import BitsAndBytesConfig
from model_spacy import nlp_xx as model_spacy
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=200.0 # https://discuss.huggingface.co/t/correct-usage-of-bitsandbytesconfig/33809/5
)
# The 100 languages supported by the facebook/m2m100_418M model
# https://huggingface.co/facebook/m2m100_418M
# plus the 'AUTOMATIC' option where we will use a language detector.
language_codes = {
'AUTOMATIC': 'auto',
'Afrikaans (af)': 'af',
'Albanian (sq)': 'sq',
'Amharic (am)': 'am',
'Arabic (ar)': 'ar',
'Armenian (hy)': 'hy',
'Asturian (ast)': 'ast',
'Azerbaijani (az)': 'az',
'Bashkir (ba)': 'ba',
'Belarusian (be)': 'be',
'Bengali (bn)': 'bn',
'Bosnian (bs)': 'bs',
'Breton (br)': 'br',
'Bulgarian (bg)': 'bg',
'Burmese (my)': 'my',
'Catalan; Valencian (ca)': 'ca',
'Cebuano (ceb)': 'ceb',
'Central Khmer (km)': 'km',
'Chinese (zh)': 'zh',
'Croatian (hr)': 'hr',
'Czech (cs)': 'cs',
'Danish (da)': 'da',
'Dutch; Flemish (nl)': 'nl',
'English (en)': 'en',
'Estonian (et)': 'et',
'Finnish (fi)': 'fi',
'French (fr)': 'fr',
'Fulah (ff)': 'ff',
'Gaelic; Scottish Gaelic (gd)': 'gd',
'Galician (gl)': 'gl',
'Ganda (lg)': 'lg',
'Georgian (ka)': 'ka',
'German (de)': 'de',
'Greeek (el)': 'el',
'Gujarati (gu)': 'gu',
'Haitian; Haitian Creole (ht)': 'ht',
'Hausa (ha)': 'ha',
'Hebrew (he)': 'he',
'Hindi (hi)': 'hi',
'Hungarian (hu)': 'hu',
'Icelandic (is)': 'is',
'Igbo (ig)': 'ig',
'Iloko (ilo)': 'ilo',
'Indonesian (id)': 'id',
'Irish (ga)': 'ga',
'Italian (it)': 'it',
'Japanese (ja)': 'ja',
'Javanese (jv)': 'jv',
'Kannada (kn)': 'kn',
'Kazakh (kk)': 'kk',
'Korean (ko)': 'ko',
'Lao (lo)': 'lo',
'Latvian (lv)': 'lv',
'Lingala (ln)': 'ln',
'Lithuanian (lt)': 'lt',
'Luxembourgish; Letzeburgesch (lb)': 'lb',
'Macedonian (mk)': 'mk',
'Malagasy (mg)': 'mg',
'Malay (ms)': 'ms',
'Malayalam (ml)': 'ml',
'Marathi (mr)': 'mr',
'Mongolian (mn)': 'mn',
'Nepali (ne)': 'ne',
'Northern Sotho (ns)': 'ns',
'Norwegian (no)': 'no',
'Occitan (post 1500) (oc)': 'oc',
'Oriya (or)': 'or',
'Panjabi; Punjabi (pa)': 'pa',
'Persian (fa)': 'fa',
'Polish (pl)': 'pl',
'Portuguese (pt)': 'pt',
'Pushto; Pashto (ps)': 'ps',
'Romanian; Moldavian; Moldovan (ro)': 'ro',
'Russian (ru)': 'ru',
'Serbian (sr)': 'sr',
'Sindhi (sd)': 'sd',
'Sinhala; Sinhalese (si)': 'si',
'Slovak (sk)': 'sk',
'Slovenian (sl)': 'sl',
'Somali (so)': 'so',
'Spanish (es)': 'es',
'Sundanese (su)': 'su',
'Swahili (sw)': 'sw',
'Swati (ss)': 'ss',
'Swedish (sv)': 'sv',
'Tagalog (tl)': 'tl',
'Tamil (ta)': 'ta',
'Thai (th)': 'th',
'Tswana (tn)': 'tn',
'Turkish (tr)': 'tr',
'Ukrainian (uk)': 'uk',
'Urdu (ur)': 'ur',
'Uzbek (uz)': 'uz',
'Vietnamese (vi)': 'vi',
'Welsh (cy)': 'cy',
'Western Frisian (fy)': 'fy',
'Wolof (wo)': 'wo',
'Xhosa (xh)': 'xh',
'Yiddish (yi)': 'yi',
'Yoruba (yo)': 'yo',
'Zulu (zu)': 'zu'
}
tgt_language_codes = {
'English (en)': 'en',
'French (fr)': 'fr'
}
def build_text_chunks(
text: str,
sents_per_chunk: int=5,
words_per_chunk=200) -> list[str]:
"""Split a given text into chunks with at most sents_per_chnks and words_per_chunk
Given a text:
- Split the text into sentences.
- Build text chunks:
- Consider up to sents_per_chunk
- Ensure that we do not exceed words_per_chunk
"""
# Split text into sentences...
sentences = [
sent.text.strip() for sent in model_spacy(text).sents if sent.text.strip()
]
logger.info(f"TEXT: {text[:25]}, NB_SENTS: {len(sentences)}")
# Create text chunks of N sentences
chunks = []
chunk = ''
chunk_nb_sentences = 0
chunk_nb_words = 0
for i in range(0, len(sentences)):
# Get sentence
sent = sentences[i]
sent_nb_words = len(sent.split())
# If chunk already 'full', save chunk, start new chunk
if (
(chunk_nb_words + sent_nb_words > words_per_chunk) or
(chunk_nb_sentences + 1 > sents_per_chunk)
):
chunks.append(chunk)
chunk = ''
chunk_nb_sentences = 0
chunk_nb_words = 0
# Append sentence to current chunk. One sentence per line.
chunk = (chunk + '\n' + sent) if chunk else sent
chunk_nb_sentences += 1
chunk_nb_words += sent_nb_words
# Append last chunk
if chunk:
chunks.append(chunk)
return chunks
class Singleton(type):
_instances = {}
def __call__(cls, *args, **kwargs):
if cls not in cls._instances:
cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)
return cls._instances[cls]
class ModelM2M100(metaclass=Singleton):
"""Loads an instance of the M2M100 model.
Model: https://huggingface.co/facebook/m2m100_1.2B
"""
def __init__(self):
self._model_name = "facebook/m2m100_418M"
self._tokenizer = M2M100Tokenizer.from_pretrained(self._model_name)
self._model = M2M100ForConditionalGeneration.from_pretrained(
self._model_name,
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
#quantization_config=quantization_config
)
self._model = torch.compile(self._model)
@spaces.GPU
def translate(
self,
text: str,
src_lang: str,
tgt_lang: str,
chunk_text: bool=True,
sents_per_chunk: int=5,
words_per_chunk: int=200
) -> str:
"""Translate the given text from src_lang to tgt_lang.
The text will be split into chunks to ensure the chunks fit into the
model input_max_length (usually 512 tokens).
"""
chunks = [text,]
if chunk_text:
chunks = build_text_chunks(text, sents_per_chunk, words_per_chunk)
self._tokenizer.src_lang = src_lang
translated_chunks = []
for chunk in chunks:
input_ids = self._tokenizer(
chunk,
return_tensors="pt").input_ids.to(self._model.device)
outputs = self._model.generate(
input_ids=input_ids,
forced_bos_token_id=self._tokenizer.get_lang_id(tgt_lang))
translated_chunk = self._tokenizer.batch_decode(
outputs,
skip_special_tokens=True)[0]
translated_chunks.append(translated_chunk)
return '\n'.join(translated_chunks)
@property
def model_name(self):
return self._model_name
@property
def tokenizer(self):
return self._tokenizer
@property
def model(self):
return self._model
@property
def device(self):
return self._model.device
class ModelMADLAD(metaclass=Singleton):
"""Loads an instance of the Google MADLAD model (3B).
Model: https://huggingface.co/google/madlad400-3b-mt
"""
def __init__(self):
self._model_name = "google/madlad400-3b-mt"
self._input_max_length = 512 # config.json n_positions
self._output_max_length = 512 # config.json n_positions
self._tokenizer = AutoTokenizer.from_pretrained(
self.model_name, use_fast=True
)
self._model = AutoModelForSeq2SeqLM.from_pretrained(
self._model_name,
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
quantization_config=quantization_config
)
self._model = torch.compile(self._model)
@spaces.GPU
def translate(
self,
text: str,
tgt_lang: str,
chunk_text: True,
sents_per_chunk: int=5,
words_per_chunk: int=5
) -> str:
"""Translate given text into the target language.
The text will be split into chunks to ensure the chunks fit into the
model input_max_length (usually 512 tokens).
"""
chunks = [text,]
if chunk_text:
chunks = build_text_chunks(text, sents_per_chunk, words_per_chunk)
translated_chunks = []
for chunk in chunks:
input_text = f"<2{tgt_lang}> {chunk}"
logger.info(f" Translating: {input_text[:50]}")
input_ids = self._tokenizer(
input_text,
return_tensors="pt",
max_length=self._input_max_length,
truncation=True,
padding="longest").input_ids.to(self._model.device)
outputs = self._model.generate(
input_ids=input_ids,
max_length=self._output_max_length)
translated_chunk = self._tokenizer.decode(
outputs[0],
skip_special_tokens=True)
translated_chunks.append(translated_chunk)
return '\n'.join(translated_chunks)
@property
def model_name(self):
return self._model_name
@property
def tokenizer(self):
return self._tokenizer
@property
def model(self):
return self._model
@property
def device(self):
return self._model.device
# Bi-lingual individual models
src_langs = set(["ar", "en", "fa", "fr", "he", "ja", "zh"])
model_names = {
"ar": "Helsinki-NLP/opus-mt-ar-en",
"en": "Helsinki-NLP/opus-mt-en-fr",
"fa": "Helsinki-NLP/opus-mt-tc-big-fa-itc",
"fr": "Helsinki-NLP/opus-mt-fr-en",
"he": "Helsinki-NLP/opus-mt-tc-big-he-en",
"zh": "Helsinki-NLP/opus-mt-zh-en",
}
# Registry for all loaded bilingual models
tokenizer_model_registry = {}
device = 'cpu'
def get_tokenizer_model_for_src_lang(src_lang: str) -> (AutoTokenizer, AutoModelForSeq2SeqLM):
"""
Return the (tokenizer, model) for a given source language.
"""
src_lang = src_lang.lower()
# Already loaded?
if src_lang in tokenizer_model_registry:
return tokenizer_model_registry.get(src_lang)
# Load tokenizer and model
model_name = model_names.get(src_lang)
if not model_name:
raise Exception(f"No model defined for language: {src_lang}")
# We will leave the models on the CPU (for now)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
if model.config.torch_dtype != torch.float16:
model = model.half()
model.to(device)
tokenizer_model_registry[src_lang] = (tokenizer, model)
return (tokenizer, model)
# Max number of words for given input text
# - Usually 512 tokens (max position encodings, as well as max length)
# - Let's set to some number of words somewhat lower than that threshold
# - e.g. 200 words
max_words_per_chunk = 200
|