Spaces:
Sleeping
Sleeping
File size: 12,058 Bytes
d8a1279 37244c4 5bb3d19 37244c4 81e2904 37244c4 d8a1279 81e2904 37244c4 d8a1279 37244c4 5bb3d19 37244c4 b86bd14 37244c4 f29339b 37244c4 f29339b 37244c4 f29339b 37244c4 5bb3d19 37244c4 e303824 37244c4 5bb3d19 eb53fd2 5bb3d19 eb53fd2 5bb3d19 eb53fd2 37244c4 eb53fd2 37244c4 eb53fd2 37244c4 5bb3d19 37244c4 eb53fd2 37244c4 e303824 1f37230 37244c4 f29339b 37244c4 f29339b 5bb3d19 eb53fd2 5bb3d19 e303824 37244c4 e303824 37244c4 f29339b b09dbcd f29339b 37244c4 f29339b 37244c4 1f37230 37244c4 d8a1279 37244c4 d8a1279 37244c4 d8a1279 37244c4 d8a1279 37244c4 d8a1279 37244c4 d8a1279 37244c4 d8a1279 37244c4 d8a1279 37244c4 d8a1279 37244c4 d8a1279 37244c4 d8a1279 37244c4 d8a1279 e75df51 b4ee383 e75df51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig
import logging
import gc
import warnings
import os
from huggingface_hub import login
from config import MODEL_CONFIGS, DEFAULT_MODEL, MODEL_SETTINGS, GENERATION_DEFAULTS, MEDICAL_SYSTEM_PROMPT, UI_CONFIG
# Login with the secret token
login(token=os.getenv("HF_TOKEN"))
# Suppress warnings
warnings.filterwarnings("ignore")
logging.getLogger("transformers").setLevel(logging.ERROR)
# Global variables for model and tokenizer
model = None
tokenizer = None
current_model_name = None
def load_model(model_key=None):
"""Load the specified medical model with optimizations for Hugging Face Spaces"""
global model, tokenizer, current_model_name
if model_key is None:
model_key = DEFAULT_MODEL
# Try to load models in order of preference - prioritize lightweight models
model_keys_to_try = [model_key, "flan_t5_small", "dialogpt_medium", "meditron"]
for key in model_keys_to_try:
if key not in MODEL_CONFIGS:
continue
try:
model_config = MODEL_CONFIGS[key]
model_name = model_config["name"]
print(f"Attempting to load model: {model_name} ({model_config['description']})")
# Load tokenizer first
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=MODEL_SETTINGS["trust_remote_code"],
padding_side="left"
)
# Add pad token if it doesn't exist
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Configure quantization for memory efficiency (only for larger models)
model_kwargs = {
"trust_remote_code": MODEL_SETTINGS["trust_remote_code"],
"low_cpu_mem_usage": MODEL_SETTINGS["low_cpu_mem_usage"]
}
# Optimized loading for CPU performance
if MODEL_SETTINGS["use_quantization"] and torch.cuda.is_available() and key in ["medllama2", "meditron", "clinical_camel"]:
# Only use quantization on GPU for larger models
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
model_kwargs["quantization_config"] = quantization_config
model_kwargs["torch_dtype"] = torch.float16
model_kwargs["device_map"] = MODEL_SETTINGS["device_map"]
else:
# For CPU or smaller models, use optimized settings
if torch.cuda.is_available():
model_kwargs["torch_dtype"] = torch.float16
model_kwargs["device_map"] = "auto"
else:
# CPU-optimized settings
model_kwargs["torch_dtype"] = torch.float32 # Use float32 on CPU
model_kwargs["device_map"] = None # Let it use CPU naturally
print("Loading model...")
# Use appropriate model class based on model type
if "flan-t5" in model_name.lower() or "t5" in model_name.lower():
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, **model_kwargs)
else:
model = AutoModelForCausalLM.from_pretrained(model_name, **model_kwargs)
current_model_name = model_name
print(f"β
Model loaded successfully: {model_name}")
return True
except Exception as e:
print(f"β Failed to load {key}: {str(e)}")
# Clean up on failure
model = None
tokenizer = None
continue
print("β All model loading attempts failed")
return False
def generate_response(prompt, max_tokens=None, temperature=None, top_p=None):
"""Generate response using the loaded model"""
global model, tokenizer, current_model_name
print(f"Starting generation for prompt: {prompt}")
if not prompt or not prompt.strip():
return "Please enter a question. π"
if model is None or tokenizer is None:
return "β Model not loaded. Please wait for initialization or try restarting the space."
# Use defaults if not specified
max_tokens = max_tokens or GENERATION_DEFAULTS["max_new_tokens"]
temperature = temperature or GENERATION_DEFAULTS["temperature"]
top_p = top_p or GENERATION_DEFAULTS["top_p"]
try:
# Format prompt based on model type
if "flan-t5" in current_model_name.lower() or "t5" in current_model_name.lower():
# Use a concise instruction prefix for T5
instruction = "You are a friendly medical assistant. Answer with short, clear health info. Use emojis like π. For serious issues, suggest seeing a doctor."
full_input = f"{instruction}\nQuestion: {prompt} Answer:"
else:
# Causal LM format
full_input = f"{MEDICAL_SYSTEM_PROMPT}\n\nPatient/User: {prompt}\n"
print(f"Full input: {full_input}")
# Tokenize input with proper truncation (reduced max_length for T5)
inputs = tokenizer(
full_input,
return_tensors="pt",
truncation=True,
max_length=512,
padding=True
)
# Move to appropriate device
device = next(model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generation parameters - optimized for T5
generation_kwargs = {
"max_new_tokens": min(max_tokens, 256), # Reduced to 256 for control
"temperature": temperature,
"top_p": top_p,
"do_sample": GENERATION_DEFAULTS["do_sample"],
"repetition_penalty": GENERATION_DEFAULTS["repetition_penalty"],
"no_repeat_ngram_size": GENERATION_DEFAULTS["no_repeat_ngram_size"]
}
# Add pad_token_id for non-T5 models
if not ("flan-t5" in current_model_name.lower() or "t5" in current_model_name.lower()):
generation_kwargs["pad_token_id"] = tokenizer.eos_token_id
print(f"Generating with kwargs: {generation_kwargs}")
# Generate response
print(f"π€ Generating response with {current_model_name}...")
import time
start_time = time.time()
with torch.no_grad():
outputs = model.generate(**inputs, **generation_kwargs)
generation_time = time.time() - start_time
print(f"β±οΈ Generation completed in {generation_time:.2f} seconds")
# Decode response - different handling for T5 vs causal models
if "flan-t5" in current_model_name.lower() or "t5" in current_model_name.lower():
# T5 generates only the answer, no need to remove prompt
response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
else:
# Causal models generate prompt + answer, need to remove prompt
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = full_response.replace(full_input, "").strip()
print(f"Generated response: {response}")
# Clean up response
if not response or len(response.strip()) < 10:
response = "Sorry, I couldn't process that. Try again or see a doctor. π"
print(f"β
Generated response length: {len(response)} characters")
print(f"π Response preview: {response[:150]}{'...' if len(response) > 150 else ''}")
# Clean up memory
del inputs, outputs
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect() # Force garbage collection
print(f"π Generated response: {response}")
return response
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
print(error_msg)
return f"β οΈ I encountered a technical issue while processing your request. Please try again or rephrase your question. If the problem persists, consider consulting a healthcare professional directly."
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
"""Main response function for Gradio ChatInterface"""
if not message or not message.strip():
return "Please enter a medical question or concern."
# Add a disclaimer for first-time users
disclaimer = "\n\nβ οΈ **Medical Disclaimer**: This AI provides general health information only. Always consult healthcare professionals for medical advice, diagnosis, or treatment."
try:
# Generate response
response = generate_response(
message.strip(),
max_tokens=int(max_tokens),
temperature=float(temperature),
top_p=float(top_p)
)
# Add disclaimer to response
if "disclaimer" not in response.lower() and "consult" not in response.lower():
response += disclaimer
return response
except Exception as e:
error_msg = f"System error: {str(e)}"
print(error_msg)
return f"β οΈ System temporarily unavailable. Please try again later or consult a healthcare professional directly.{disclaimer}"
def get_model_info():
"""Get information about the currently loaded model"""
if current_model_name:
return f"Currently using: {current_model_name}"
return "No model loaded"
# Load model on startup
print("π₯ Initializing MedLLaMA2 Medical Chatbot...")
print("π Loading medical language model...")
model_loaded = load_model()
if model_loaded:
print(f"β
Ready! {get_model_info()}")
else:
print("β οΈ WARNING: Model failed to load. The app will run but responses may be limited.")
# Create Gradio interface with configuration
demo = gr.ChatInterface(
respond,
title=UI_CONFIG["title"],
description=UI_CONFIG["description"],
additional_inputs=[
gr.Textbox(
value=MEDICAL_SYSTEM_PROMPT,
label="System Instructions",
lines=4,
interactive=False # Make it read-only to prevent tampering
),
gr.Slider(
minimum=UI_CONFIG["max_tokens_range"][0],
maximum=UI_CONFIG["max_tokens_range"][1],
value=GENERATION_DEFAULTS["max_new_tokens"],
step=10,
label="Max new tokens"
),
gr.Slider(
minimum=UI_CONFIG["temperature_range"][0],
maximum=UI_CONFIG["temperature_range"][1],
value=GENERATION_DEFAULTS["temperature"],
step=0.1,
label="Temperature (creativity)"
),
gr.Slider(
minimum=UI_CONFIG["top_p_range"][0],
maximum=UI_CONFIG["top_p_range"][1],
value=GENERATION_DEFAULTS["top_p"],
step=0.05,
label="Top-p (focus)",
),
],
examples=[[example] for example in UI_CONFIG["examples"]],
cache_examples=False,
theme=gr.themes.Soft(),
css=".gradio-container {max-width: 900px; margin: auto;}"
)
# Add model info to the interface
with demo:
gr.HTML(f"<p style='text-align: center; color: #666; font-size: 0.9em;'>Model Status: {get_model_info()}</p>")
if __name__ == "__main__":
# For Hugging Face Spaces deployment
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True,
debug=True
)
|