Spaces:
Sleeping
Sleeping
Fixed memory issue
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 4 |
import logging
|
| 5 |
import gc
|
| 6 |
import warnings
|
|
@@ -27,8 +27,8 @@ def load_model(model_key=None):
|
|
| 27 |
if model_key is None:
|
| 28 |
model_key = DEFAULT_MODEL
|
| 29 |
|
| 30 |
-
# Try to load models in order of preference
|
| 31 |
-
model_keys_to_try = [model_key, "
|
| 32 |
|
| 33 |
for key in model_keys_to_try:
|
| 34 |
if key not in MODEL_CONFIGS:
|
|
@@ -80,7 +80,11 @@ def load_model(model_key=None):
|
|
| 80 |
model_kwargs["device_map"] = None # Let it use CPU naturally
|
| 81 |
|
| 82 |
print("Loading model...")
|
| 83 |
-
model
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
current_model_name = model_name
|
| 86 |
print(f"✅ Model loaded successfully: {model_name}")
|
|
@@ -113,7 +117,14 @@ def generate_response(prompt, max_tokens=None, temperature=None, top_p=None):
|
|
| 113 |
top_p = top_p or GENERATION_DEFAULTS["top_p"]
|
| 114 |
|
| 115 |
try:
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
print(f"Full prompt: {full_prompt}")
|
| 118 |
|
| 119 |
# Tokenize input with proper truncation
|
|
@@ -121,7 +132,7 @@ def generate_response(prompt, max_tokens=None, temperature=None, top_p=None):
|
|
| 121 |
full_prompt,
|
| 122 |
return_tensors="pt",
|
| 123 |
truncation=True,
|
| 124 |
-
max_length=512,
|
| 125 |
padding=True
|
| 126 |
)
|
| 127 |
|
|
@@ -129,16 +140,28 @@ def generate_response(prompt, max_tokens=None, temperature=None, top_p=None):
|
|
| 129 |
device = next(model.parameters()).device
|
| 130 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 131 |
|
| 132 |
-
# Generation parameters
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
print(f"Generating with kwargs: {generation_kwargs}")
|
| 144 |
|
|
@@ -153,9 +176,15 @@ def generate_response(prompt, max_tokens=None, temperature=None, top_p=None):
|
|
| 153 |
generation_time = time.time() - start_time
|
| 154 |
print(f"⏱️ Generation completed in {generation_time:.2f} seconds")
|
| 155 |
|
| 156 |
-
# Decode response
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
print(f"Generated response: {response}")
|
| 160 |
|
| 161 |
# Clean up response
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig
|
| 4 |
import logging
|
| 5 |
import gc
|
| 6 |
import warnings
|
|
|
|
| 27 |
if model_key is None:
|
| 28 |
model_key = DEFAULT_MODEL
|
| 29 |
|
| 30 |
+
# Try to load models in order of preference - prioritize lightweight models
|
| 31 |
+
model_keys_to_try = [model_key, "flan_t5_small", "dialogpt_medium", "meditron"]
|
| 32 |
|
| 33 |
for key in model_keys_to_try:
|
| 34 |
if key not in MODEL_CONFIGS:
|
|
|
|
| 80 |
model_kwargs["device_map"] = None # Let it use CPU naturally
|
| 81 |
|
| 82 |
print("Loading model...")
|
| 83 |
+
# Use appropriate model class based on model type
|
| 84 |
+
if "flan-t5" in model_name.lower() or "t5" in model_name.lower():
|
| 85 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, **model_kwargs)
|
| 86 |
+
else:
|
| 87 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, **model_kwargs)
|
| 88 |
|
| 89 |
current_model_name = model_name
|
| 90 |
print(f"✅ Model loaded successfully: {model_name}")
|
|
|
|
| 117 |
top_p = top_p or GENERATION_DEFAULTS["top_p"]
|
| 118 |
|
| 119 |
try:
|
| 120 |
+
# Format prompt based on model type
|
| 121 |
+
if "flan-t5" in current_model_name.lower() or "t5" in current_model_name.lower():
|
| 122 |
+
# T5 instruction format
|
| 123 |
+
full_prompt = f"{MEDICAL_SYSTEM_PROMPT}\n\nQuestion: {prompt}\nAnswer:"
|
| 124 |
+
else:
|
| 125 |
+
# Causal LM format
|
| 126 |
+
full_prompt = f"{MEDICAL_SYSTEM_PROMPT}\n\nPatient/User: {prompt}\n"
|
| 127 |
+
|
| 128 |
print(f"Full prompt: {full_prompt}")
|
| 129 |
|
| 130 |
# Tokenize input with proper truncation
|
|
|
|
| 132 |
full_prompt,
|
| 133 |
return_tensors="pt",
|
| 134 |
truncation=True,
|
| 135 |
+
max_length=512,
|
| 136 |
padding=True
|
| 137 |
)
|
| 138 |
|
|
|
|
| 140 |
device = next(model.parameters()).device
|
| 141 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 142 |
|
| 143 |
+
# Generation parameters - different for T5 vs causal models
|
| 144 |
+
if "flan-t5" in current_model_name.lower() or "t5" in current_model_name.lower():
|
| 145 |
+
# T5 seq2seq generation parameters
|
| 146 |
+
generation_kwargs = {
|
| 147 |
+
"max_new_tokens": min(max_tokens, 100),
|
| 148 |
+
"temperature": temperature,
|
| 149 |
+
"top_p": top_p,
|
| 150 |
+
"do_sample": GENERATION_DEFAULTS["do_sample"],
|
| 151 |
+
"repetition_penalty": GENERATION_DEFAULTS["repetition_penalty"],
|
| 152 |
+
"early_stopping": True
|
| 153 |
+
}
|
| 154 |
+
else:
|
| 155 |
+
# Causal LM generation parameters
|
| 156 |
+
generation_kwargs = {
|
| 157 |
+
"max_new_tokens": min(max_tokens, 1024),
|
| 158 |
+
"temperature": temperature,
|
| 159 |
+
"top_p": top_p,
|
| 160 |
+
"do_sample": GENERATION_DEFAULTS["do_sample"],
|
| 161 |
+
"pad_token_id": tokenizer.eos_token_id,
|
| 162 |
+
"repetition_penalty": GENERATION_DEFAULTS["repetition_penalty"],
|
| 163 |
+
"no_repeat_ngram_size": GENERATION_DEFAULTS["no_repeat_ngram_size"]
|
| 164 |
+
}
|
| 165 |
|
| 166 |
print(f"Generating with kwargs: {generation_kwargs}")
|
| 167 |
|
|
|
|
| 176 |
generation_time = time.time() - start_time
|
| 177 |
print(f"⏱️ Generation completed in {generation_time:.2f} seconds")
|
| 178 |
|
| 179 |
+
# Decode response - different handling for T5 vs causal models
|
| 180 |
+
if "flan-t5" in current_model_name.lower() or "t5" in current_model_name.lower():
|
| 181 |
+
# T5 generates only the answer, no need to remove prompt
|
| 182 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
| 183 |
+
else:
|
| 184 |
+
# Causal models generate prompt + answer, need to remove prompt
|
| 185 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 186 |
+
response = full_response.replace(full_prompt, "").strip()
|
| 187 |
+
|
| 188 |
print(f"Generated response: {response}")
|
| 189 |
|
| 190 |
# Clean up response
|
config.py
CHANGED
|
@@ -16,8 +16,8 @@ MODEL_CONFIGS = {
|
|
| 16 |
}
|
| 17 |
}
|
| 18 |
|
| 19 |
-
# Default model to use -
|
| 20 |
-
DEFAULT_MODEL = "
|
| 21 |
|
| 22 |
# Model loading settings (optimized for CPU)
|
| 23 |
MODEL_SETTINGS = {
|
|
|
|
| 16 |
}
|
| 17 |
}
|
| 18 |
|
| 19 |
+
# Default model to use - lightweight for 16GB memory limit
|
| 20 |
+
DEFAULT_MODEL = "flan_t5_small"
|
| 21 |
|
| 22 |
# Model loading settings (optimized for CPU)
|
| 23 |
MODEL_SETTINGS = {
|