Spaces:
Sleeping
Sleeping
File size: 9,282 Bytes
3169cc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# -*- coding: utf-8 -*-
# @Time : 2022/2/17 11:26 上午
# @Author : JianingWang
# @File : kg.py
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
import torch.nn.functional as F
from collections import OrderedDict
from transformers.models.bert import BertPreTrainedModel, BertModel
from transformers.models.bert.modeling_bert import BertOnlyMLMHead
class MLPLayer(nn.Module):
"""
Head for getting sentence representations over RoBERTa/BERT"s CLS representation.
"""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, features, **kwargs):
x = self.dense(features)
x = self.activation(x)
return x
class Similarity(nn.Module):
"""
Dot product or cosine similarity
"""
def __init__(self, temp):
super().__init__()
self.temp = temp
self.cos = nn.CosineSimilarity(dim=-1)
def forward(self, x, y):
return self.cos(x, y) / self.temp
class BertForPretrainWithKG(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.cls = BertOnlyMLMHead(config)
self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, config.num_ner_labels) for _ in range(config.entity_type_num)])
self.post_init()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
ner_labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs.last_hidden_state
# mlm
prediction_scores = self.cls(sequence_output)
# ner
sequence_output = self.dropout(sequence_output)
ner_logits = torch.stack([classifier(sequence_output) for classifier in self.classifiers]).movedim(1, 0)
# mlm
masked_lm_loss, ner_loss, total_loss = None, None, None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if ner_labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
active_loss = attention_mask.repeat(self.config.entity_type_num, 1, 1).view(-1) == 1
active_logits = ner_logits.reshape(-1, self.config.num_ner_labels)
active_labels = torch.where(
active_loss, ner_labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(ner_labels)
)
ner_loss = loss_fct(active_logits, active_labels)
if masked_lm_loss:
total_loss = masked_lm_loss + ner_loss * 4
return OrderedDict([
("loss", total_loss),
("mlm_loss", masked_lm_loss.unsqueeze(0)),
("ner_loss", ner_loss.unsqueeze(0)),
("logits", prediction_scores.argmax(2)),
("ner_logits", ner_logits.argmax(3))
])
# MaskedLMOutput(
# loss=total_loss,
# logits=prediction_scores.argmax(2),
# ner_l
# hidden_states=outputs.hidden_states,
# attentions=outputs.attentions,
# )
class BertForPretrainWithKGV2(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.cls = BertOnlyMLMHead(config)
self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, config.num_ner_labels) for _ in range(config.entity_type_num)])
self.mlp = MLPLayer(config)
self.sim = Similarity(0.05)
self.post_init()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
ner_labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs.last_hidden_state
# mlm
prediction_scores = self.cls(sequence_output)
# ner
sequence_output = self.dropout(sequence_output)
ner_logits = torch.stack([classifier(sequence_output) for classifier in self.classifiers]).movedim(1, 0)
# mlm
masked_lm_loss, ner_loss, total_loss = None, None, None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if ner_labels is not None:
loss_fct = CrossEntropyLoss()
active_logits = ner_logits.reshape(-1, self.config.num_ner_labels)
# padding 的label是-100
ner_loss = loss_fct(active_logits, ner_labels.view(-1))
if masked_lm_loss:
total_loss = masked_lm_loss
if ner_loss:
total_loss = total_loss + ner_loss
# 对比cls loss
# cls_hidden = outputs.pooler_output
cls_hidden = sequence_output[:, 0]
simcse_loss = self.simcse_unsup_loss2(cls_hidden)
if simcse_loss:
total_loss = total_loss + simcse_loss*10
ner_out = ner_logits.argmax(3)
return OrderedDict([
("loss", total_loss),
("mlm_loss", masked_lm_loss.unsqueeze(0)),
("ner_loss", ner_loss.unsqueeze(0)),
("logits", prediction_scores.argmax(2)),
("ner_logits", ner_out.view(ner_out.shape[0], -1)),
("simcse_loss", simcse_loss.unsqueeze(0))
])
def simcse_unsup_loss2(self, pooler_output):
pooler_output = pooler_output.view((-1, 2, pooler_output.size(-1)))
pooler_output = self.mlp(pooler_output)
z1, z2 = pooler_output[:, 0], pooler_output[:, 1]
cos_sim = self.sim(z1.unsqueeze(1), z2.unsqueeze(0))
labels = torch.arange(cos_sim.size(0)).long().to(pooler_output.device)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(cos_sim, labels)
return loss
@staticmethod
def simcse_unsup_loss(y_pred: "tensor") -> "tensor":
# 得到y_pred对应的label, [1, 0, 3, 2, ..., batch_size-1, batch_size-2]
y_true = torch.arange(y_pred.shape[0], device=y_pred.device)
y_true = (y_true - y_true % 2 * 2) + 1
# batch内两两计算相似度, 得到相似度矩阵(对角矩阵)
sim = F.cosine_similarity(y_pred.unsqueeze(1), y_pred.unsqueeze(0), dim=-1)
# sim = torch.mm(y_pred, y_pred.transpose(0, 1))
# 将相似度矩阵对角线置为很小的值, 消除自身的影响
sim = sim - torch.eye(y_pred.shape[0], device=y_pred.device) * 1e12
# 相似度矩阵除以温度系数
sim = sim/0.05
# 计算相似度矩阵与y_true的交叉熵损失
loss = F.cross_entropy(sim, y_true)
print(loss)
return loss
|