Spaces:
Sleeping
Sleeping
File size: 12,289 Bytes
08f4077 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# -*- coding: utf-8 -*-
# @Time : 2021/12/6 3:35 下午
# @Author : JianingWang
# @File : __init__.py
# from models.chid_mlm import BertForChidMLM
from models.multiple_choice.duma import BertDUMAForMultipleChoice, AlbertDUMAForMultipleChoice, MegatronDumaForMultipleChoice
from models.span_extraction.global_pointer import BertForEffiGlobalPointer, RobertaForEffiGlobalPointer, RoformerForEffiGlobalPointer, MegatronForEffiGlobalPointer
from transformers import AutoModelForTokenClassification, AutoModelForSequenceClassification, AutoModelForMaskedLM, AutoModelForMultipleChoice, BertTokenizer, \
AutoModelForQuestionAnswering, AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers.models.roformer import RoFormerTokenizer
from transformers.models.bert import BertTokenizerFast, BertForTokenClassification, BertTokenizer
from transformers.models.roberta.tokenization_roberta import RobertaTokenizer
from transformers.models.gpt2.tokenization_gpt2_fast import GPT2TokenizerFast
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.t5.tokenization_t5 import T5Tokenizer
from transformers.models.plbart.tokenization_plbart import PLBartTokenizer
# from models.deberta import DebertaV2ForMultipleChoice, DebertaForMultipleChoice
# from models.fengshen.models.longformer import LongformerForMultipleChoice
from models.kg import BertForPretrainWithKG, BertForPretrainWithKGV2
from models.language_modeling.mlm import BertForMaskedLM, RobertaForMaskedLM, AlbertForMaskedLM, RoFormerForMaskedLM
# from models.sequence_classification.classification import build_cls_model
from models.multiple_choice.multiple_choice_tag import BertForTagMultipleChoice, RoFormerForTagMultipleChoice, MegatronBertForTagMultipleChoice
from models.multiple_choice.multiple_choice import MegatronBertForMultipleChoice, MegatronBertRDropForMultipleChoice
from models.semeval7 import DebertaV2ForSemEval7MultiTask
from models.sequence_matching.fusion_siamese import BertForFusionSiamese, BertForWSC
# from roformer import RoFormerForTokenClassification, RoFormerForSequenceClassification
from models.fewshot_learning.span_proto import SpanProto
from models.fewshot_learning.token_proto import TokenProto
from models.sequence_labeling.head_token_cls import (
BertSoftmaxForSequenceLabeling, BertCrfForSequenceLabeling,
RobertaSoftmaxForSequenceLabeling, RobertaCrfForSequenceLabeling,
AlbertSoftmaxForSequenceLabeling, AlbertCrfForSequenceLabeling,
MegatronBertSoftmaxForSequenceLabeling, MegatronBertCrfForSequenceLabeling,
)
from models.span_extraction.span_for_ner import BertSpanForNer, RobertaSpanForNer, AlbertSpanForNer, MegatronBertSpanForNer
from models.language_modeling.mlm import BertForMaskedLM
from models.language_modeling.kpplm import BertForWikiKGPLM, RoBertaKPPLMForProcessedWikiKGPLM, DeBertaKPPLMForProcessedWikiKGPLM
from models.language_modeling.causal_lm import GPT2ForCausalLM
from models.sequence_classification.head_cls import (
BertForSequenceClassification, BertPrefixForSequenceClassification,
BertPtuningForSequenceClassification, BertAdapterForSequenceClassification,
RobertaForSequenceClassification, RobertaPrefixForSequenceClassification,
RobertaPtuningForSequenceClassification,RobertaAdapterForSequenceClassification,
BartForSequenceClassification, GPT2ForSequenceClassification
)
from models.sequence_classification.masked_prompt_cls import (
PromptBertForSequenceClassification, PromptBertPtuningForSequenceClassification,
PromptBertPrefixForSequenceClassification, PromptBertAdapterForSequenceClassification,
PromptRobertaForSequenceClassification, PromptRobertaPtuningForSequenceClassification,
PromptRobertaPrefixForSequenceClassification, PromptRobertaAdapterForSequenceClassification
)
from models.sequence_classification.causal_prompt_cls import PromptGPT2ForSequenceClassification
from models.code.code_classification import (
RobertaForCodeClassification, CodeBERTForCodeClassification,
GraphCodeBERTForCodeClassification, PLBARTForCodeClassification, CodeT5ForCodeClassification
)
from models.code.code_generation import (
PLBARTForCodeGeneration
)
from models.reinforcement_learning.actor import CausalActor
from models.reinforcement_learning.critic import AutoModelCritic
from models.reinforcement_learning.reward_model import (
RobertaForReward, GPT2ForReward
)
# Models for pre-training
PRETRAIN_MODEL_CLASSES = {
"mlm": {
"bert": BertForMaskedLM,
"roberta": RobertaForMaskedLM,
"albert": AlbertForMaskedLM,
"roformer": RoFormerForMaskedLM,
},
"auto_mlm": AutoModelForMaskedLM,
"causal_lm": {
"gpt2": GPT2ForCausalLM,
"bart": None,
"t5": None,
"llama": None
},
"auto_causal_lm": AutoModelForCausalLM
}
CLASSIFICATION_MODEL_CLASSES = {
"auto_cls": AutoModelForSequenceClassification, # huggingface cls
"classification": AutoModelForSequenceClassification, # huggingface cls
"head_cls": {
"bert": BertForSequenceClassification,
"roberta": RobertaForSequenceClassification,
"bart": BartForSequenceClassification,
"gpt2": GPT2ForSequenceClassification
}, # use standard fine-tuning head for cls, e.g., bert+mlp
"head_prefix_cls": {
"bert": BertPrefixForSequenceClassification,
"roberta": RobertaPrefixForSequenceClassification,
}, # use standard fine-tuning head with prefix-tuning technique for cls, e.g., bert+mlp
"head_ptuning_cls": {
"bert": BertPtuningForSequenceClassification,
"roberta": RobertaPtuningForSequenceClassification,
}, # use standard fine-tuning head with p-tuning technique for cls, e.g., bert+mlp
"head_adapter_cls": {
"bert": BertAdapterForSequenceClassification,
"roberta": RobertaAdapterForSequenceClassification,
}, # use standard fine-tuning head with adapter-tuning technique for cls, e.g., bert+mlp
"masked_prompt_cls": {
"bert": PromptBertForSequenceClassification,
"roberta": PromptRobertaForSequenceClassification,
# "deberta": PromptDebertaForSequenceClassification,
# "deberta-v2": PromptDebertav2ForSequenceClassification,
}, # use masked lm head technique for prompt-based cls, e.g., bert+mlm
"masked_prompt_prefix_cls": {
"bert": PromptBertPrefixForSequenceClassification,
"roberta": PromptRobertaPrefixForSequenceClassification,
# "deberta": PromptDebertaPrefixForSequenceClassification,
# "deberta-v2": PromptDebertav2PrefixForSequenceClassification,
}, # use masked lm head with prefix-tuning technique for prompt-based cls, e.g., bert+mlm
"masked_prompt_ptuning_cls": {
"bert": PromptBertPtuningForSequenceClassification,
"roberta": PromptRobertaPtuningForSequenceClassification,
# "deberta": PromptDebertaPtuningForSequenceClassification,
# "deberta-v2": PromptDebertav2PtuningForSequenceClassification,
}, # use masked lm head with p-tuning technique for prompt-based cls, e.g., bert+mlm
"masked_prompt_adapter_cls": {
"bert": PromptBertAdapterForSequenceClassification,
"roberta": PromptRobertaAdapterForSequenceClassification,
}, # use masked lm head with adapter-tuning technique for prompt-based cls, e.g., bert+mlm
"causal_prompt_cls": {
"gpt2": PromptGPT2ForSequenceClassification,
"bart": None,
"t5": None,
}, # use causal lm head for prompt-tuning, e.g., gpt2+lm
}
TOKEN_CLASSIFICATION_MODEL_CLASSES = {
"auto_token_cls": AutoModelForTokenClassification,
"head_softmax_token_cls": {
"bert": BertSoftmaxForSequenceLabeling,
"roberta": RobertaSoftmaxForSequenceLabeling,
"albert": AlbertSoftmaxForSequenceLabeling,
"megatron": MegatronBertSoftmaxForSequenceLabeling,
},
"head_crf_token_cls": {
"bert": BertCrfForSequenceLabeling,
"roberta": RobertaCrfForSequenceLabeling,
"albert": AlbertCrfForSequenceLabeling,
"megatron": MegatronBertCrfForSequenceLabeling,
}
}
SPAN_EXTRACTION_MODEL_CLASSES = {
"global_pointer": {
"bert": BertForEffiGlobalPointer,
"roberta": RobertaForEffiGlobalPointer,
"roformer": RoformerForEffiGlobalPointer,
"megatronbert": MegatronForEffiGlobalPointer
},
}
FEWSHOT_MODEL_CLASSES = {
"sequence_proto": None,
"span_proto": SpanProto,
"token_proto": TokenProto,
}
CODE_MODEL_CLASSES = {
"code_cls": {
"roberta": RobertaForCodeClassification,
"codebert": CodeBERTForCodeClassification,
"graphcodebert": GraphCodeBERTForCodeClassification,
"codet5": CodeT5ForCodeClassification,
"plbart": PLBARTForCodeClassification,
},
"code_generation": {
# "roberta": RobertaForCodeGeneration,
# "codebert": BertForCodeGeneration,
# "graphcodebert": BertForCodeGeneration,
# "codet5": T5ForCodeGeneration,
"plbart": PLBARTForCodeGeneration,
},
}
REINFORCEMENT_MODEL_CLASSES = {
"causal_actor": CausalActor,
"auto_critic": AutoModelCritic,
"rl_reward": {
"roberta": RobertaForReward,
"gpt2": GPT2ForReward,
"gpt-neo": None,
"opt": None,
"llama": None,
}
}
# task_type 负责对应model类型
OTHER_MODEL_CLASSES = {
# sequence labeling
"bert_span_ner": BertSpanForNer,
"roberta_span_ner": RobertaSpanForNer,
"albert_span_ner": AlbertSpanForNer,
"megatronbert_span_ner": MegatronBertSpanForNer,
# sequence matching
"fusion_siamese": BertForFusionSiamese,
# multiple choice
"multi_choice": AutoModelForMultipleChoice,
"multi_choice_megatron": MegatronBertForMultipleChoice,
"multi_choice_megatron_rdrop": MegatronBertRDropForMultipleChoice,
"megatron_multi_choice_tag": MegatronBertForTagMultipleChoice,
"roformer_multi_choice_tag": RoFormerForTagMultipleChoice,
"multi_choice_tag": BertForTagMultipleChoice,
"duma": BertDUMAForMultipleChoice,
"duma_albert": AlbertDUMAForMultipleChoice,
"duma_megatron": MegatronDumaForMultipleChoice,
# language modeling
# "bert_mlm_acc": BertForMaskedLMWithACC,
# "roformer_mlm_acc": RoFormerForMaskedLMWithACC,
"bert_pretrain_kg": BertForPretrainWithKG,
"bert_pretrain_kg_v2": BertForPretrainWithKGV2,
"kpplm_roberta": RoBertaKPPLMForProcessedWikiKGPLM,
"kpplm_deberta": DeBertaKPPLMForProcessedWikiKGPLM,
# other
"clue_wsc": BertForWSC,
"semeval7multitask": DebertaV2ForSemEval7MultiTask,
# "debertav2_multi_choice": DebertaV2ForMultipleChoice,
# "deberta_multi_choice": DebertaForMultipleChoice,
# "qa": AutoModelForQuestionAnswering,
# "roformer_cls": RoFormerForSequenceClassification,
# "roformer_ner": RoFormerForTokenClassification,
# "fensheng_multi_choice": LongformerForMultipleChoice,
# "chid_mlm": BertForChidMLM,
}
# MODEL_CLASSES = dict(list(PRETRAIN_MODEL_CLASSES.items()) + list(OTHER_MODEL_CLASSES.items()))
MODEL_CLASSES_LIST = [
PRETRAIN_MODEL_CLASSES,
CLASSIFICATION_MODEL_CLASSES,
TOKEN_CLASSIFICATION_MODEL_CLASSES,
SPAN_EXTRACTION_MODEL_CLASSES,
FEWSHOT_MODEL_CLASSES,
CODE_MODEL_CLASSES,
REINFORCEMENT_MODEL_CLASSES,
OTHER_MODEL_CLASSES,
]
MODEL_CLASSES = dict()
for model_class in MODEL_CLASSES_LIST:
MODEL_CLASSES = dict(list(MODEL_CLASSES.items()) + list(model_class.items()))
# model_type 负责对应tokenizer
TOKENIZER_CLASSES = {
# for natural language processing
"auto": AutoTokenizer,
"bert": BertTokenizerFast,
"roberta": RobertaTokenizer,
"wobert": RoFormerTokenizer,
"roformer": RoFormerTokenizer,
"bigbird": BertTokenizerFast,
"erlangshen": BertTokenizerFast,
"deberta": BertTokenizer,
"roformer_v2": BertTokenizerFast,
"gpt2": GPT2Tokenizer,
"megatronbert": BertTokenizerFast,
"bart": BartTokenizer,
"t5": T5Tokenizer,
# for programming language processing
"codebert": RobertaTokenizer,
"graphcodebert": RobertaTokenizer,
"codet5": RobertaTokenizer,
"plbart": PLBartTokenizer
}
|