Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,466 Bytes
406922d 4235b93 406922d a6e19bf 2b82929 853de85 c255e80 4700246 c438308 8bbeec9 c255e80 55b65ff 8b22a77 c255e80 406922d b4e17e5 406922d 2439595 406922d 922691a 406922d 922691a 406922d 922691a 406922d 853de85 7babadc 4a1799c f37431f fc2afdb 192f46e 0fee5bd 5b11d67 192f46e 2dab437 192f46e c5a478a 8bbeec9 41d787a 56c4152 41d787a b1fdec7 41d787a b1fdec7 56c4152 114ae7a 9884fbe 56c4152 d99a5ef 114ae7a 56c4152 7fb11b6 114ae7a d99a5ef 322d3bd 07123bc 7fb11b6 114ae7a 322d3bd 114ae7a 7fb11b6 e2ccc57 114ae7a e17384f 322d3bd 114ae7a 07123bc 114ae7a 07123bc 322d3bd 07123bc 9752325 114ae7a 322d3bd 8fa834c 9752325 8fa834c 9752325 8fa834c 9752325 8fa834c e2ccc57 3a39c6a d55bdc4 41d787a d55bdc4 f8f5931 d55bdc4 e17384f a9b63e8 f8f5931 3241b58 d55bdc4 e17384f f8f5931 e17384f d55bdc4 e17384f d55bdc4 e17384f d55bdc4 7fb11b6 d55bdc4 41d787a d55bdc4 41d787a 56c4152 41d787a 771df70 d99a5ef e17384f 771df70 c438308 b833bfe 771df70 861f78a 771df70 c438308 771df70 41d787a 771df70 c438308 8fa834c 861f78a b833bfe 861f78a 8fa834c ceeda4e 18b19dd 30157d2 e9cbeff 01ae78a e9cbeff 64f9070 b833bfe a9b63e8 cdaf020 771df70 cdaf020 b833bfe 771df70 ef667a6 b833bfe 771df70 a9b63e8 8fa834c a9b63e8 b833bfe a9b63e8 41d787a 30157d2 ef667a6 78f3d66 aca9549 8fa834c 41d787a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from data_manager import get_dog_description
from urllib.parse import quote
from ultralytics import YOLO
import asyncio
import traceback
import logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# 下載YOLOv8預訓練模型
model_yolo = YOLO('yolov8m.pt') # 使用 YOLOv8 預訓練模型
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog",
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
"Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
"Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog",
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
"Wire-Haired_Fox_Terrier"]
class MultiHeadAttention(nn.Module):
def __init__(self, in_dim, num_heads=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = max(1, in_dim // num_heads)
self.scaled_dim = self.head_dim * num_heads
self.fc_in = nn.Linear(in_dim, self.scaled_dim)
self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
self.fc_out = nn.Linear(self.scaled_dim, in_dim)
def forward(self, x):
N = x.shape[0]
x = self.fc_in(x)
q = self.query(x).view(N, self.num_heads, self.head_dim)
k = self.key(x).view(N, self.num_heads, self.head_dim)
v = self.value(x).view(N, self.num_heads, self.head_dim)
energy = torch.einsum("nqd,nkd->nqk", [q, k])
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
out = torch.einsum("nqk,nvd->nqd", [attention, v])
out = out.reshape(N, self.scaled_dim)
out = self.fc_out(out)
return out
class BaseModel(nn.Module):
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
super().__init__()
self.device = device
self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
self.feature_dim = self.backbone.classifier[1].in_features
self.backbone.classifier = nn.Identity()
self.num_heads = max(1, min(8, self.feature_dim // 64))
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
self.classifier = nn.Sequential(
nn.LayerNorm(self.feature_dim),
nn.Dropout(0.3),
nn.Linear(self.feature_dim, num_classes)
)
self.to(device)
def forward(self, x):
x = x.to(self.device)
features = self.backbone(x)
attended_features = self.attention(features)
logits = self.classifier(attended_features)
return logits, attended_features
num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)
checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
# evaluation mode
model.eval()
# Image preprocessing function
def preprocess_image(image):
# If the image is numpy.ndarray turn into PIL.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Use torchvision.transforms to process images
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
def get_akc_breeds_link():
return "https://www.akc.org/dog-breeds/"
def format_description(description, breed):
if isinstance(description, dict):
# 確保每一個描述項目換行顯示
formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
else:
formatted_description = description
akc_link = get_akc_breeds_link()
formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
"You may need to search for the specific breed on that page. "
"I am not responsible for the content on external sites. "
"Please refer to the AKC's terms of use and privacy policy.*")
formatted_description += disclaimer
return formatted_description
async def predict_single_dog(image):
image_tensor = preprocess_image(image)
with torch.no_grad():
output = model(image_tensor)
logits = output[0] if isinstance(output, tuple) else output
probabilities = F.softmax(logits, dim=1)
topk_probs, topk_indices = torch.topk(probabilities, k=3)
top1_prob = topk_probs[0][0].item()
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
return top1_prob, topk_breeds, topk_probs_percent
# async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
# dogs = []
# boxes = []
# for box in results.boxes:
# if box.cls == 16: # COCO dataset class for dog is 16
# xyxy = box.xyxy[0].tolist()
# confidence = box.conf.item()
# boxes.append((xyxy, confidence))
# if not boxes:
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
# else:
# nms_boxes = non_max_suppression(boxes, iou_threshold)
# for box, confidence in nms_boxes:
# x1, y1, x2, y2 = box
# w, h = x2 - x1, y2 - y1
# x1 = max(0, x1 - w * 0.05)
# y1 = max(0, y1 - h * 0.05)
# x2 = min(image.width, x2 + w * 0.05)
# y2 = min(image.height, y2 + h * 0.05)
# cropped_image = image.crop((x1, y1, x2, y2))
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
# return dogs
# def non_max_suppression(boxes, iou_threshold):
# keep = []
# boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
# while boxes:
# current = boxes.pop(0)
# keep.append(current)
# boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
# return keep
# def calculate_iou(box1, box2):
# x1 = max(box1[0], box2[0])
# y1 = max(box1[1], box2[1])
# x2 = min(box1[2], box2[2])
# y2 = min(box1[3], box2[3])
# intersection = max(0, x2 - x1) * max(0, y2 - y1)
# area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
# area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
# iou = intersection / float(area1 + area2 - intersection)
# return iou
async def detect_multiple_dogs(image, conf_threshold=0.1, iou_threshold=0.3):
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
dogs = []
boxes = []
for box in results.boxes:
if box.cls == 16: # COCO dataset class for dog is 16
xyxy = box.xyxy[0].tolist()
confidence = box.conf.item()
boxes.append((xyxy, confidence))
if not boxes:
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
else:
# 新增框的面積過濾條件,避免太小的框
valid_boxes = [box for box in boxes if (box[0][2] - box[0][0]) * (box[0][3] - box[0][1]) > 0.1 * image.width * image.height]
nms_boxes = non_max_suppression(valid_boxes, iou_threshold)
for box, confidence in nms_boxes:
x1, y1, x2, y2 = box
w, h = x2 - x1, y2 - y1
# 調整框的位置,處理重疊框問題
if w * h < 0.2 * image.width * image.height and confidence < 0.2:
continue # 跳過信心分數過低的框
# 根據框的大小動態調整信心門檻
if w * h < 0.05 * image.width * image.height:
continue # 過小的框直接跳過
cropped_image = image.crop((x1, y1, x2, y2))
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
return dogs
def non_max_suppression(boxes, iou_threshold=0.3):
keep = []
boxes = sorted(boxes, key=lambda x: x[1], reverse=True) # 按信心分數排序
while boxes:
current = boxes.pop(0)
keep.append(current)
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
return keep
def calculate_iou(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
iou = intersection / float(area1 + area2 - intersection)
return iou
async def process_single_dog(image):
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
if top1_prob < 0.2:
initial_state = {
"explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
"buttons": [],
"show_back": False,
"image": None,
"is_multi_dog": False
}
return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
breed = topk_breeds[0]
description = get_dog_description(breed)
if top1_prob >= 0.5:
formatted_description = format_description(description, breed)
initial_state = {
"explanation": formatted_description,
"buttons": [],
"show_back": False,
"image": image,
"is_multi_dog": False
}
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
else:
explanation = (
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
"Click on a button to view more information about the breed."
)
buttons = [
gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
gr.update(visible=True, value=f"More about {topk_breeds[2]}")
]
initial_state = {
"explanation": explanation,
"buttons": buttons,
"show_back": True,
"image": image,
"is_multi_dog": False
}
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
async def predict(image):
if image is None:
return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
dogs = await detect_multiple_dogs(image)
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
explanations = []
buttons = []
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
font = ImageFont.load_default()
for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
color = color_list[i % len(color_list)]
draw.rectangle(box, outline=color, width=3)
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
combined_confidence = detection_confidence * top1_prob
if top1_prob >= 0.5:
breed = topk_breeds[0]
description = get_dog_description(breed)
formatted_description = format_description(description, breed)
explanations.append(f"Dog {i+1}: {formatted_description}")
elif combined_confidence >= 0.2:
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
explanations.append(dog_explanation)
buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
else:
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
final_explanation = "\n\n".join(explanations)
if buttons:
final_explanation += "\n\nClick on a button to view more information about the breed."
initial_state = {
"explanation": final_explanation,
"buttons": buttons,
"show_back": True,
"image": annotated_image,
"is_multi_dog": len(dogs) > 1,
"dogs_info": explanations
}
return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
else:
initial_state = {
"explanation": final_explanation,
"buttons": [],
"show_back": False,
"image": annotated_image,
"is_multi_dog": len(dogs) > 1,
"dogs_info": explanations
}
return final_explanation, annotated_image, gr.update(visible=False, choices=[]), initial_state
except Exception as e:
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_msg)
return error_msg, None, gr.update(visible=False, choices=[]), None
def show_details(choice, previous_output, initial_state):
if not choice:
return previous_output, gr.update(visible=True), initial_state
try:
breed = choice.split("More about ")[-1]
description = get_dog_description(breed)
formatted_description = format_description(description, breed)
initial_state["current_description"] = formatted_description
initial_state["original_buttons"] = initial_state.get("buttons", [])
return formatted_description, gr.update(visible=True), initial_state
except Exception as e:
error_msg = f"An error occurred while showing details: {e}"
print(error_msg)
return error_msg, gr.update(visible=True), initial_state
def go_back(state):
buttons = state.get("buttons", [])
return (
state["explanation"],
state["image"],
gr.update(visible=True, choices=buttons),
gr.update(visible=False),
state
)
with gr.Blocks() as iface:
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
with gr.Row():
input_image = gr.Image(label="Upload a dog image", type="pil")
output_image = gr.Image(label="Annotated Image")
output = gr.Markdown(label="Prediction Results")
breed_buttons = gr.Radio(choices=[], label="More Information", visible=False)
back_button = gr.Button("Back", visible=False)
initial_state = gr.State()
input_image.change(
predict,
inputs=input_image,
outputs=[output, output_image, breed_buttons, initial_state]
)
breed_buttons.change(
show_details,
inputs=[breed_buttons, output, initial_state],
outputs=[output, back_button, initial_state]
)
back_button.click(
go_back,
inputs=[initial_state],
outputs=[output, output_image, breed_buttons, back_button, initial_state]
)
gr.Examples(
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
inputs=input_image
)
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
if __name__ == "__main__":
iface.launch() |