Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -303,29 +303,27 @@ def _detect_multiple_dogs(image, conf_threshold):
|
|
303 |
|
304 |
async def predict(image):
|
305 |
if image is None:
|
306 |
-
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False)
|
307 |
|
308 |
try:
|
309 |
if isinstance(image, np.ndarray):
|
310 |
image = Image.fromarray(image)
|
311 |
|
312 |
# 嘗試檢測多隻狗
|
313 |
-
dogs = await detect_multiple_dogs(image)
|
314 |
if len(dogs) == 0:
|
315 |
-
# 單狗情境
|
316 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
317 |
if top1_prob < 0.2:
|
318 |
-
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False)
|
319 |
|
320 |
breed = topk_breeds[0]
|
321 |
description = get_dog_description(breed)
|
322 |
-
formatted_description = format_description(description, breed)
|
323 |
|
324 |
-
# 如果置信度高於 0.5,返回結果
|
325 |
if top1_prob >= 0.5:
|
326 |
-
|
|
|
327 |
else:
|
328 |
-
# 如果置信度不足,顯示前三個可能的品種
|
329 |
explanation = (
|
330 |
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
331 |
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
@@ -333,13 +331,13 @@ async def predict(image):
|
|
333 |
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
334 |
"Click on a button to view more information about the breed."
|
335 |
)
|
336 |
-
|
337 |
-
return explanation,
|
338 |
|
339 |
-
# 多狗情境
|
340 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
341 |
explanations = []
|
342 |
-
|
343 |
annotated_image = image.copy()
|
344 |
draw = ImageDraw.Draw(annotated_image)
|
345 |
font = ImageFont.load_default()
|
@@ -352,24 +350,28 @@ async def predict(image):
|
|
352 |
|
353 |
if top1_prob >= 0.5:
|
354 |
breed = topk_breeds[0]
|
355 |
-
|
356 |
-
explanations.append(f"Dog {i+1}
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
else:
|
358 |
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
359 |
|
360 |
final_explanation = "\n\n".join(explanations)
|
361 |
-
return final_explanation, annotated_image, gr.update(visible=True, choices=
|
362 |
|
363 |
except Exception as e:
|
364 |
-
return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False)
|
365 |
-
|
366 |
|
367 |
async def show_details(choice):
|
368 |
if not choice:
|
369 |
return "Please select a breed to view details."
|
370 |
|
371 |
try:
|
372 |
-
# 解析出用戶選擇��品種
|
373 |
if "Dog" in choice:
|
374 |
_, breed = choice.split(": ", 1)
|
375 |
else:
|
@@ -379,17 +381,7 @@ async def show_details(choice):
|
|
379 |
except Exception as e:
|
380 |
return f"An error occurred while showing details: {e}"
|
381 |
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
with gr.Blocks(css="""
|
386 |
-
.container { max-width: 900px; margin: auto; padding: 20px; }
|
387 |
-
.gr-box { border-radius: 15px; }
|
388 |
-
.output-markdown { margin-top: 20px; padding: 15px; background-color: #f5f5f5; border-radius: 10px; }
|
389 |
-
.examples { display: flex; justify-content: center; flex-wrap: wrap; gap: 10px; margin-top: 20px; }
|
390 |
-
.examples img { width: 100px; height: 100px; object-fit: cover; }
|
391 |
-
""") as iface:
|
392 |
-
|
393 |
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
394 |
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
395 |
|
@@ -401,14 +393,8 @@ with gr.Blocks(css="""
|
|
401 |
breed_buttons = gr.Radio([], label="Select breed for more details", visible=False)
|
402 |
breed_details = gr.Markdown(label="Breed Details")
|
403 |
|
404 |
-
async def safe_predict(image):
|
405 |
-
try:
|
406 |
-
return await predict(image)
|
407 |
-
except Exception as e:
|
408 |
-
return str(e), None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
409 |
-
|
410 |
input_image.change(
|
411 |
-
|
412 |
inputs=input_image,
|
413 |
outputs=[output, output_image, breed_buttons, breed_details]
|
414 |
)
|
@@ -424,7 +410,6 @@ with gr.Blocks(css="""
|
|
424 |
inputs=input_image
|
425 |
)
|
426 |
|
427 |
-
|
428 |
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
429 |
|
430 |
if __name__ == "__main__":
|
|
|
303 |
|
304 |
async def predict(image):
|
305 |
if image is None:
|
306 |
+
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False)
|
307 |
|
308 |
try:
|
309 |
if isinstance(image, np.ndarray):
|
310 |
image = Image.fromarray(image)
|
311 |
|
312 |
# 嘗試檢測多隻狗
|
313 |
+
dogs = await detect_multiple_dogs(image)
|
314 |
if len(dogs) == 0:
|
315 |
+
# 單狗情境
|
316 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
317 |
if top1_prob < 0.2:
|
318 |
+
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False)
|
319 |
|
320 |
breed = topk_breeds[0]
|
321 |
description = get_dog_description(breed)
|
|
|
322 |
|
|
|
323 |
if top1_prob >= 0.5:
|
324 |
+
formatted_description = format_description(description, breed)
|
325 |
+
return formatted_description, image, gr.update(visible=False), gr.update(visible=False)
|
326 |
else:
|
|
|
327 |
explanation = (
|
328 |
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
329 |
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
|
|
331 |
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
332 |
"Click on a button to view more information about the breed."
|
333 |
)
|
334 |
+
choices = [f"More about {breed}" for breed in topk_breeds[:3]]
|
335 |
+
return explanation, image, gr.update(visible=True, choices=choices), gr.update(visible=False)
|
336 |
|
337 |
+
# 多狗情境
|
338 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
339 |
explanations = []
|
340 |
+
choices = []
|
341 |
annotated_image = image.copy()
|
342 |
draw = ImageDraw.Draw(annotated_image)
|
343 |
font = ImageFont.load_default()
|
|
|
350 |
|
351 |
if top1_prob >= 0.5:
|
352 |
breed = topk_breeds[0]
|
353 |
+
choices.append(f"Dog {i+1}: {breed}")
|
354 |
+
explanations.append(f"Dog {i+1}: **{breed}** ({topk_probs_percent[0]} confidence)")
|
355 |
+
elif top1_prob >= 0.2:
|
356 |
+
explanations.append(f"Dog {i+1}: Top 3 possible breeds:\n"
|
357 |
+
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
358 |
+
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
|
359 |
+
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)")
|
360 |
+
choices.extend([f"Dog {i+1}: {breed}" for breed in topk_breeds[:3]])
|
361 |
else:
|
362 |
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
363 |
|
364 |
final_explanation = "\n\n".join(explanations)
|
365 |
+
return final_explanation, annotated_image, gr.update(visible=True, choices=choices), gr.update(visible=False)
|
366 |
|
367 |
except Exception as e:
|
368 |
+
return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False)
|
|
|
369 |
|
370 |
async def show_details(choice):
|
371 |
if not choice:
|
372 |
return "Please select a breed to view details."
|
373 |
|
374 |
try:
|
|
|
375 |
if "Dog" in choice:
|
376 |
_, breed = choice.split(": ", 1)
|
377 |
else:
|
|
|
381 |
except Exception as e:
|
382 |
return f"An error occurred while showing details: {e}"
|
383 |
|
384 |
+
with gr.Blocks() as iface:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
386 |
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
387 |
|
|
|
393 |
breed_buttons = gr.Radio([], label="Select breed for more details", visible=False)
|
394 |
breed_details = gr.Markdown(label="Breed Details")
|
395 |
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
input_image.change(
|
397 |
+
predict,
|
398 |
inputs=input_image,
|
399 |
outputs=[output, output_image, breed_buttons, breed_details]
|
400 |
)
|
|
|
410 |
inputs=input_image
|
411 |
)
|
412 |
|
|
|
413 |
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
414 |
|
415 |
if __name__ == "__main__":
|